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ARTICLE INFO ABSTRACT

Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD,
and porosity were measured using subcritical nitrogen (N,) adsorption, and helium porosimetry. A suite of 17
samples were collected from 4 wells in Pennsylvania and West Virginia to analyze the evolution of porosity with
increasing thermal maturity in Middle Devonian shales of the Appalachian Basin. The thermal maturity of the
tested samples covers a wide range in the hydrocarbon generation sequence from wet gas/condensate zone
(vitrinite reflectance (R,) = 1.16%) to post-mature zone (R, = 2.79%). Shale samples from the Marcellus Shale
and Mahantango Formation used in this study have total organic carbon contents from 0.41 to 7.88 wt%. Results
indicate that total organic carbon (TOC) has the strongest effect on porosity and pore structure. The presence of
organic matter in shale strongly enhances the storage capacity by increasing the specific surface area and pore
volume, which represents sorption storage capacity and free-gas storage capacity. Differences in porosity and
pore structure have a complex relationship to thermal maturity, micro texture, mineralogy, clay content, and
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1. Introduction

The performance of a shale reservoir critically depends on the pore
systems since they provide the storage capacity and pathway for hy-
drocarbon flow. Porosity and pore size distribution are widely used to
characterize pore structure [1-5].The pore-throat size in shale re-
servoirs ranges from submicron to nanometer scale [6], which is sig-
nificantly smaller than that of conventional reservoirs. Also, the pore
systems in shale reservoirs are composed of pores hosted by both mi-
neral grains and organic matter, and fractures. As a result, a variety of
pore sizes and fluid flow regime occur in shales, from Darcy flow in
large connected pores to slippage and Knudsen diffusion in nanometer-
scale organic matter (OM) hosted pores [7-9]. The heterogeneity of
fine-grained strata and the wide distribution of pore sizes make it
challenging to evaluate a shale reservoir. Many geologic factors, in-
cluding total organic carbon (TOC), mineralogy, thermal maturity, and
grain assemblage, have been investigated to determine their influence
of pore structure [10-14].

The Appalachian Basin is a foreland basin that formed as a result of
numerous successive orogenies along the southeast margin of Ancestral
North America throughout the Neoproterozoic to the Late Triassic [15].
Several shale units were deposited throughout the history of the basin,
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although the Hamilton Group, due to lateral continuity, organic-rich-
ness, and vast hydrocarbon potential, has been the focal point of study
over the last two decades. The Hamilton Group is largely made up of
two mudrock formations, namely the organic-rich Marcellus Shale
(basal unit) and the organic-lean Mahantango Formation [16]. The
Hamilton Group units were deposited as a part of the Catskill Delta
complex, which is a wedge of clastic marine and terrestrial deposits
sourced from the highlands of the northern margin of the basin
[17-22]. The Marcellus shale was deposited under anoxic to euxinic
conditions with limited siliciclastic influx, resulting in the preservation
of large quantities of organic matter, giving the Marcellus Shale the
distinct dark-gray to black appearance in core and outcrop [23]. In
contrast, the Mahantango Formation was deposited under oxic to dys-
oxic conditions, with considerable amount siliciclastic influx from
northern highlands, which created a more diluted, relatively organic-
lean grey to dark grey mudrock. Due to these characteristics, the
Marcellus Shale was considered as the chief source-rock formation
during the early development of gas plays in the Appalachian basin
during 1930s-1960s [24]. The study of the Marcellus Shale as a target
reservoir started with the Eastern Gas Shales Project funded by the US
Department of Energy during late 1970s through the 1980s [24,25].
Early studies of the porosity and permeability of the Middle Devonian
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shale succession revealed that organic matter content and thermal
maturity influence the potential productivity [26-28]. The introduction
of horizontal drilling and hydraulic fracturing techniques enabled the
economic production of a series of shale reservoirs including the Mar-
cellus Shale [24,25].

Organic matter hosted porosity has been considered as the domi-
nant gas storage capacity of shale residue in the kerogen network
[14,29]. Milliken et al. (2013) studied a set of samples at a thermal
maturity between an Ro of 1.0 and 2.1% in the Marcellus Shale of
northern Pennsylvania, and found that variation of TOC is a stronger
control on the character of OM-hosted pore systems than variation in
thermal maturity, especially at TOC contents < 5.6 wt% [30]. Gu et al.
(2015) investigated the porosity of Marcellus Shale from a core drilled
in Centre County, Pennsylvania, USA, using ultra small-angle neutron
scattering (USANS), small-angle neutron scattering (SANS), FIB-SEM,
and nitrogen gas adsorption. They argue that the dominant nanometer
sized pores in organic-poor, clay-rich shale samples are water-accessible
sheet-like pores within clay aggregates. In contrast, bubble-like orga-
nophilic pores in kerogen dominate organic-rich sample [31].

Numerous studies about the evolution of OM hosted porosity with
thermal maturation have been conducted with different methodologies,
yet this question is still not well understood. Although OM-hosted
porosity is created during thermal cracking of kerogen and generation
of hydrocarbon [32-34], maturity alone is not a reliable predictor of
porosity in organic matter, and other factors such as the composition of
OM could also influence the generation of organic matter hosted por-
osity. Curtis et al. (2011) analyzed two Marcellus Shale samples with
vitrinite reflectance of 1.1% and over 3.1%, using focused ion beam
(FIB) milling and scanning electron microscopy (SEM). They found no
correlation between thermal maturity and OM hosted porosity [35].
Mechanical compaction is also an important factor when evaluating the
preservation of OM-hosted porosity, since OM is normally less resistant
towards mechanical compaction compared with the rest of the rock
[36]. Mastalerz et al. (2013) examined five New Albany Shale samples
with a maturity range from immature to post mature and emphasized
the importance of mineralogical composition to porosity. They con-
clude that hydrocarbon generation and migration is the main reason of
the changes observed in porosity and pore volume [7]. Given the
number of geologic factors controlling the generation and modification
of OM-hosted pores, a systematic study of porosity and storage capacity
evolution through thermal maturation is in need.

In this study, we selected a suite of core samples from the
Mahantango Formation and the Marcellus Shale covering a range from
wet gas (Ro 1.16%) to post-mature (Ro 2.79%). The focus of this study
is to better understand the effects of thermal maturity on evolution of
porosity and storage capacity.

2. Materials and methods
2.1. Materials

Seventeen core samples were collected from 4 wells penetrating
Marcellus and Mahantango shales in West Virginia and Pennsylvania
(Figs. 1 and 2). Table 1 lists the samples analyzed in this research, in-
cluding the formations from which they were sampled, TOC, and
thermal maturity (represented by vitrinite reflectance, R,). Four sam-
ples were taken from the CS1 well, located in Clearfield County,
Pennsylvania, four samples were taken from the SW1 well, located in
Greene County, Pennsylvania, three samples were taken from the G55
well, located in Harrison County, West Virginia, and five samples were
taken from the Alwell, located in Taylor County, West Virginia. The
mudrock samples were selected to cover a range of thermal maturities
from a Ro of 1.16% to 2.79%, which represents a range from the con-
densate zone to the post-mature zone. Some samples are from the same
wells and depths as the samples that were studied extensively in pre-
vious research at the Department of Geology and Geography, West
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Virginia University [37-41]. This helped us during the selection of
samples in this research. Samples represent a wide range of miner-
alogical composition and organic-matter content, and represent the
Marcellus Shale and Mahantango Formation relatively well.

2.2. Subcritical nitrogen adsorption

Subcritical N, adsorption was conducted on a Micromeritics ASAP-
2020 instrument at —196 °C (77 K). About 1g of shale sample was
crushed with mortar and pestle until the whole mass passes through a
60-mesh sieve to prevent potential sample biasing due to sieving. Then
samples were set under high-vacuum at 120 °C for 24 h to remove ad-
sorbed water and volatile matter prior to analyses with N». Forty-three
relative-pressure (P/P0) points ranging from 0.009 to 0.990 were
measured on both adsorption and desorption branches. The adsorption
branch of the isotherms from samples was used to obtain information
about micropores (< 2nm in diameter) and mesopores (2-50 nm in
diameter). The classification of pore sizes used in this article follows the
classification system of the International Union of Pure and Applied
Chemistry. This classification of pore sizes has proven to be very con-
venient in coal and shale studies [1,7,11,42]. Specific surface area
(SSA) was calculated based on Brunauer-Emmet-Teller (BET) theory
[43]. Pore volumes and pore distributions are based on Barrett-Joyner-
Halenda (BJH) model, t-Plot, H-K model [43-45]. A detailed descrip-
tion of these theories and techniques can be found in Reporting Physi-
sorption Data for Gas/Solid Systems, and Physisorption of Gases, with
Special Reference to the Evaluation of Surface Area and Pore Size Dis-
tribution [46,47].

2.3. Porosity

Porosity was measured using the Gas Research Institute (GRI) he-
lium porosimetry method on crushed core samples [28], and was con-
ducted by Core Laboratories in Houston, Texas. The bulk volume is
determined by Archimedes’ principle with mercury immersion, and
grain volume is determined using Boyle’s Law with helium expansion.
Pore fluids were removed by Dean Stark extraction, and crushed sam-
ples (20-35 mesh) were dried at 110 °C. Porosity is calculated based on
the difference between bulk volume and grain volume.

2.4. Mineralogical composition

Mineralogical composition was quantified with X-ray Diffraction
(XRD). The samples were ground in a steel grinding container to ul-
trafine particle size and pressed into chemplex pellets. XRD was per-
formed with a PANalytical X’Pert Pro X-ray Diffractometer at the
Shared Research Facilities of West Virginia University. The original
spectra were interpreted using the X’Pert HighScore Plus Program.

2.5. Additional data

Total organic carbon is determined with approximately 60-100 mg
of pulverized mudrock sample in the Source Rock Analyzer (SRA) at the
National Energy Technology Laboratory (NETL). Vitrinite reflectance
was provided by Core Laboratories in Houston, TX as shared in part
with a joint industry project, the Marcellus Shale Consortium.

3. Results
3.1. Mineralogy, total organic carbon, and porosity

Results of XRD analysis for this sample suite demonstrate a very
wide distribution in mineralogy (Table 2 and Fig. 3). Quartz and clay
minerals are the major constituents in most of the samples. Sample CS1-
2 was also taken from a carbonate rich layer, which contains 36.8%
carbonate (calcite and dolomite). Clay minerals specifically illite and
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Fig. 1. Locations of the four study wells.
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Fig. 2. Stratigraphy of the study area.

chlorite, are dominant in most of the Mahantango samples (G55-1, Al-
1, A1-2, CS1-1, and SW1-1). Sample A1-2 from the lower part of Ma-
hantango Formation illustrates nearly equal percentages of quartz and
total clay, 46.6% and 40.5% respectively. The relative abundance of
individual clay minerals also varies in different samples. In samples
from well G55, A1, and SW1, illite and mica exceeded chlorite, whereas
in well CS1 chlorite is the major clay mineral. Samples G55-3, Al-4,
SW1-1, and SW1-2 show no chlorite, while sample CS1-4 with a similar
organic content level with the previous mentioned four samples shows
30.6% chlorite.

1038

Table 1
Vitrinite reflectance (Ro), total organic carbon (TOC) content, depth, and for-
mation of shale samples.

Sample name Well # Depth (ft) Formation TOC (wt.%) R, (%)
G55-1 G55 7099.00 Mahantango 0.65 1.36
G55-2 G55 7149.50 Marcellus 4.28 1.36
G55-3 G55 7211.00 Marcellus 5.91 NA
Al-1 Al 7555.00 Mahantango 2.10 1.40
Al-2 Al 7605.00 Mahantango 2.24 1.38
Al1-3 Al 7714.00 Marcellus 4.34 1.46
Al-4 Al 7734.00 Marcellus 5.84 NA
Al-5 Al 7765.00 Marcellus 5.12 1.41
CS1-1 Cs1 7019.00 Mahantango 1.80 2.59
CS1-2 CS1 7070.00 Marcellus 2.33 2.67
CS1-3 CS1 7099.50 Marcellus 7.28 2.68
CS1-4 Cs1 7128.00 Marcellus 4.28 2.79
CS1-5 Cs1 7145.00 Marcellus 6.20 NA
SW1-1 WS1 7742.00 Mahantango 0.41 1.25
SW1-2 WS1 7852.00 Marcellus 4.66 1.16
SW1-3 WsS1 7873.00 Marcellus 4.80 1.18
SW1-4 WS1 7891.00 Marcellus 7.88 NA

Total organic carbon ranges from 1.94% to 7.88% in samples from
the Marcellus Shale. While in Mahantango Formation, it ranges from
0.41% to 2.24%. Generally, the TOC of Marcellus Shale is significantly
higher than Manhantango Formation, and that of lower Marcellus
(Union Springs Member) is higher than the upper Marcellus (Oakta
Creek Member).

Helium porosimetry was employed to provide comparative values
for grain density, bulk sample density, and total porosity (Table 3). The
porosity ranges from 1.95% for sample A1-2 to 7.56% for sample G55-
2.

3.2. Nitrogen adsorption

N, adsorption at —196 °C is used to investigate pore volume and
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Table 2

Mineralogy Composition of Shale Samples in Volume Percentage.
Sample # Quartz K-Feldspar Plagioclase Calcite Dolomite Pyrite Kerogen Illite & Mica Chlorite
G55-1 36.3 0.6 5.0 3.9 0.7 0.5 1.5 33.2 18.4
G55-2 47.4 0.0 3.1 1.9 0.0 3.3 9.5 27.6 7.1
G55-3 49.8 0.0 3.0 10.1 0.0 3.9 12.9 20.3 0.0
Al-1 37.3 0.7 5.5 0.0 0.0 2.4 4.8 33.8 15.5
Al-2 46.2 0.0 4.4 0.7 0.0 2.9 5.1 27.7 12.8
Al1-3 33.1 0.0 4.1 5.5 1.9 8.4 10.0 37.0 0.0
Al-3 53.3 0.0 2.9 1.7 1.4 4.1 12.8 23.9 0.0
Al-4 57.8 0.0 2.2 3.3 1.6 5.9 11.5 17.8 0.0
CS1-1 37.8 0.7 5.4 0.3 0.8 0.6 4.1 18.4 32.1
CS1-2 24.8 0.5 2.5 32.0 3.4 2.7 5.3 9.1 19.7
CS1-3 29.9 0.5 4.8 0.5 0.3 5.8 16.0 10.7 31.5
CS1-4 32.9 0.0 4.0 11.7 1.5 6.9 10.0 7.5 25.5
Cs1-5 35.1 0.6 4.5 2.3 0.8 4.6 13.8 7.8 30.6
SW1-1 37.1 1.5 5.7 4.0 2.6 0.3 0.6 35.4 12.8
SW1-2 41.9 0.7 4.7 2.3 1.5 4.3 10.4 31.1 3.1
SW1-3 35.9 11 5.9 8.3 0.6 8.8 11.1 28.3 0.0
SW1-4 49.4 0.6 3.2 11.4 0.9 6.0 17.2 11.3 0.0

pore surface area. Both adsorption and desorption branches were col- Table 3

lected, and the adsorption branch is used for calculating the surface Bulk density, grain density, and GRI porosity of shale samples.

area and pore volume. All samples exhibit similar isotherm and hys-

R ) K - ’ Sample # Bulk Density (g/cm®) Grain Density (g/cm®) GRI Porosity (%)
teresis loops (Fig. 4). All the isotherms are classified as type IV with

hysteresis loops according to IUPAC classification, indicating the ex- G55-1 2.65 2.75 4.33
istence of meso-porosity and slit-shape pores [47,48]. Among all the G55-2 2.48 2.66 7.56
s . . G55-3 2.39 2.56 7.32

samples, Marcellus samples show better capability of adsorbing ni- ALl 266 e 166
trogen than Mahantango samples (Fig. 4). Sample Al-4 exhibits the Al-2 2.70 2.74 1.95
highest capacity of nitrogen adsorption. According to IUPAC, 1985, the A1-3 2.52 2.69 7.00
N, adsorption isotherms of all the samples are type IV with type H4 Al-4 2.47 2.61 6.06
Al-5 2.46 2.60 6.04

hysteresis (Fig. 4). The presence of a hysteresis loops is usually attrib-

. L cs1-1 2.63 2.77 6.06
uted to capillary condensation in mesopore structures (2nm < Pore cS12 2.62 275 577
Size < 50nm) [45-48], which in this case indicates the existence of cs1-3 2.59 2.83 9.32
mesopores in shale reservoir. Moreover, the H4 hysteresis loops are CS1-4 2.60 2.76 6.97
mainly associated with narrow slit-like pores which have both meso- GS1-5 261 273 5.92
; . - SW1-1 2.70 2.78 3.61
porosity and microporosity [46]. SW1-2 .55 .68 577
Brunauer-Emmett-Teller specific surface area (SSA), BJH pore vo- SW1-3 253 2.67 6.22
lume, t-plot pore volume, BJH pore diameter, and average pore width SW1-4 2.45 2.63 7.41

are calculated from N, adsorption analysis (Table 4), and the results
show a wide range of distribution. The average SSA and BJH pore vo-
lume of the Marcellus is 29.63m?/g and 0.032 cm®/g, respectively,

SW1-4
SW1-3
SW1-2
SW1-1
CS1-4
CS1-3
CS1-2
CS1-1
Al-5
Al-4
Al-3
Al-2
Al-1
G55-3
G55-2
G55-1

Sample

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
Volume Percentage
#Quartz ®mK-Feldspar ®Plagioclase =Calcite 2 Dolomite ™ Pyrite mWKerogen ®Illite & Mica < Chlorite

Fig. 3. Mineralogical composition of shale samples in volume percentage, data from Table 2.
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Fig. 4. Nitrogen adsorption isotherms of samples.

Table 4

Pore structure parameters determined via N, adsorption, in which, Sggt is BET
SSA, Vg is BJH pore volume, and Vo is micropore volume calculated by t-
plot method.

Sample  Sper (m%/g)  Vpyn Viplot Average pore Median Pore
(em®/g)  (em®/g) width (nm) Size (nm)

G55-1  7.0648 0.0181 0.0003 10.0809 37.1455
G55-2 31.8860 0.0313 0.0026 4.0523 3.9583
G55-3  40.9633 0.0401 0.0034 4.0476 3.9385
Al-1 13.4741 0.0214 0.0012 6.0467 15.7122
Al1-2 7.0968 0.0164 0.0006 8.9877 36.5020
Al-3 32.0093 0.0318 0.0049 3.4521 2.3615
Al-4 43.6434 0.0429 0.0036 4.0530 3.9630
Al-5 39.1090 0.0393 0.0042 3.6391 2.8217
CS1-1 12.9714 0.0227 0.0017 6.6517 18.2136
CS1-2 16.2535 0.0245 0.0018 5.7011 12.0847
CS1-3 28.4174 0.0373 0.0029 4.9206 6.7659
CS1-4 20.4252 0.0268 0.0021 4.9221 6.7808
CS1-5 25.1049 0.0309 0.0025 4.9290 6.8475
SW1-1  4.2921 0.0134 0.0005 12.3459 46.1250
SWi1-2  22.1421 0.0308 0.0021 5.2434 10.4812
SW1-3  25.8305 0.0268 0.0039 3.6213 2.8385
SW1-4  28.5299 0.0271 0.0030 3.4026 2.2826

while the average SSA and BJH pore volume of the Mahantango is
8.98 m?/g and 0.018 cm®/g, respectively. Overall, the pore volume does
not change as significantly as pore surface area, mainly because smaller
pores (pore size smaller than 5nm) does not contribute very much to
pore volume, but make a significant difference in the pore surface area
(Song et al., in prep). The smallest SSA measured is 4.2921 m?/g from
sample SW1-1, and the greatest SSA is 43.6434 m?/g from sample A1-4.
The micropore volume is represented by the t-plot volume. The Ma-
hantango samples have smaller micropore volumes, while Marcellus
samples has larger micropore volumes (Table 4).

Pore size distributions reveal that the TOC influences the pore
structure, especially micropore volume and SSA (Fig. 5). The least or-
ganic-rich sample (SW1-1, TOC: 0.41%) shows almost no micro por-
osity. With slightly higher TOC (0.65-2.24%), the rest of Mahantango
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samples exhibit similar characteristics, but with higher amount of mi-
cropores as TOC increases (Fig. 5A). The majority of the pores in Ma-
hantango Formation are larger than 10 nm. The organic-rich Marcellus
samples (TOC: 2.33-7.88%) demonstrate greater pore space, specifi-
cally micropores. Sample G55-2, G55-3, A1-3, Al-4, and Al-5 exhibit
similar PSD, with the majority of pores between 4 and 10 nm. These 5
samples also show the largest SSA. Low thermal maturity Marcellus
samples SW1-3 and SW1-4 show limited mesopore occurrence com-
pared with other organic-rich samples (Fig. 5).

4. Discussion
4.1. Relationship between pore structure parameters

Shale samples with smaller pores have larger specific surface area
and pore volume. Fig. 6 illustrates a general negative relationship be-
tween specific surface area and pore size (average pore width, median
pore size). Pore volume and pore size show the same negative corre-
lation (Table 4, Fig. 6). The porosity value in this research as de-
termined by the GRI method shows a negative correlation between
porosity and pore size (Fig. 7). All samples show an increase in pore
volume and surface area with decreasing pore size.

4.2. Relationships between pore structure and TOC

The influences of organic matter on the pore structure are demon-
strated in Fig. 8. The Marcellus Shale demonstrates a significantly
greater adsorbed and free-gas storage capacity, (SSA and pore volume
respectively) compared to the Mahantango Formation. The least or-
ganic-rich sample SW1-1 (TOC 0.41%) shows the least SSA and pore
volume, and the largest pore size (Table 4). In this sample with negli-
gible organic matter, most of the pores are hosted by non-organic mi-
nerals. Previous workers attribute increasing SSA and pore volume with
increasing TOC and the development of OM-hosted pores [13,30,49].
Indeed, our results yield a good correlation between TOC and SSA and
pore volume (Fig. 8), and porosity (Fig. 9A). The increase of TOC also is
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Fig. 6. Relationship between pore structure parameters.

related to a decrease in pore size (Fig. 9B). This argument agrees with
previous research on porosity development in other shale units
[13,42,49-53]. At lower TOC content, all the samples show a similar
range in SSA and pore volume. As TOC increases, there is more variance
in the storage capacity at higher TOC. Samples from well G55 and Al
show a better storage capacity than SW1 and CS1.

4.3. Relationships between pore structure and minerals

No correlation was observed between carbonate or quartz content
and SSA. Fig. 10 shows a negative correlation between clay content and
the storage capacity. Pure clay minerals have been found to have large
specific surface area [54]. For illite, the BET SSA is usually on the order

1041

Fig. 7. Relationships between GRI porosity and (A) average pore width, and (B)
median pore size.

of 100 m?/g, and the BET SSA of kaolinite and chlorite typically stays
on the order of 10 mz/g [3]. However, clay-rich samples of the Mar-
cellus Shale and Mahantango Formation do not demonstrate an increase
in contribution to SSA and pore volume (Table 2, Fig. 3). This phe-
nomenon may be attributed to the accessibility of the pore space. This
result agrees with Milliken et al., 2013’s research [30] that the Mar-
cellus Shale is an organic matter-hosted pore system. Organic matter
shows the most significant control on the storage capacity than mi-
nerals.
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4.4. The relationship between thermal maturity and pore structure

Thermal maturity also plays a very important but complex role in
evaluating the storage capacity of shales [5,7,10,30,35,55-59]. Fig. 11
shows the results of SSA involve with respect to vitrinite reflectance.
The samples cover a thermal maturity ranging from the late oil window
(well SW1), to the dry gas window (G55, A1), ending in the post-mature
zone (CS1). Regardless of thermal maturity, we notice a significant
strong positive correlation (R? = 0.9098 or 0.9435) between TOC and
SSA in both Marcellue Shale and Mahantango samples (Fig. 8A). Given
a similar TOC level, samples in the dry gas window shows the highest
SSA, and samples from the post-mature zone shows the least. Our ob-
servation supports the ideas that porosity is altered during maturation,
and organic matter is largely responsible for porosity changes because
of the transformation of its kerogen and bitumen into hydrocarbons and
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other liquids. Further, at post-mature thermal maturities, there is a
reduction in storage capacity.

5. Conclusions

The SSA, pore volume, and pore size were measured for four dif-
ferent wells penetrating the Mahantango and Marcellus formations
from West Virginia and Pennsylvania. Samples cover a wide range of
thermal maturity and hydrocarbon generation windows from 1.16 to
2.79% R,. Furthermore, samples have a wide range of TOC, clay con-
tent and type. The following conclusions based on the results in this
study are:

. The presence of organic matter in shale strongly enhances the sto-
rage capacity by increasing the SSA and pore volume, which re-
presents sorption storage capacity and free-gas storage capacity;

. As TOC increases, average and median pore sizes decrease;

. Carbonate and quartz do not show any correlation with porosity,
SSA, or pore volume;

. Organic matter has more significant influence on SSA and pore
volume than clay content. A negative correlation is found between
clay content and specific surface area and pore volume. We suspect
that pore space within clay minerals is inaccessible.

. The development of organic matter pores is altered during thermal
maturation. Samples in the dry gas window show highest SSA and
pore volume, while those samples from the post-mature zone show a
reduced range of storage capacity under the same TOC level.
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