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ABSTRACT

To precisely quantify pore space and organic matter (OM) from
two-dimensional scanning electron microscope (SEM) images, an
efficient and consistent workflow using adaptive local thresh-
olding, Otsu thresholding and Image Calculator are presented. It
can offer an automated segmentation of pore space and OM, then
differentiates the porosity hosted by OM and minerals. The work-
flow is demonstrated on a widely distributed set of core samples
from Mahantango and Marcellus shale units of the Appalachian
basin. The vitrinite reflectance of these samples ranges from 1.36%
to 2.89%, covering a spectrum of thermal maturity. Organic matter
abundance and mineralogy also vary significantly. The results are
compared with routine rock property tests, such as helium poros-
imeter (Gas Research Institute method), and total OM. The pro-
posed workflow improves quantitative determination of porosity
above a certain pore size and OM in shale samples. Advantages of
this workflow include improved consistency and speed of analysis
of SEM images of shale samples at the nanoscale.

INTRODUCTION

The exploration and exploitation of shale gas reservoirs have
attracted global interest in this fine-grained rock type. Shale gas
production in the United States increased from 0.8 tcf (22.7
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billion m3) in 2000 to 15.7 (444.6 billion m3) tcf in 2016 and will
account for nearly two-thirds of natural gas production by 2040
(US Energy Information Administration, 2017). Porosity, pore
structure, organic matter (OM) abundance, grain assemblage
composition, and thermal maturity are key factors in assessing
shale gas resources and reserves and understanding storage
capacity and long-term producibility of a shale gas reservoir.
Shale, or more correctly, mudrock (mudstone), has long been
considered as seal or source rock because of its low permeability
and tendency to be associated in the geologic record with
preserved OM (Zagorski et al., 2012).

One aspect that makes a mudrock reservoir “unconventional”
is that conventional drilling and completion technologies are not
successful in hydrocarbon production because of the nanoscale
pore sizes. Characterization of nanometer pores in a mudrock
reservoir requires a high-resolution technique to show the fine-
scale properties. Compared with other technologies, such as
mercury injection capillary pressure, physical adsorption, nuclear
magnetic resonance, and helium porosimeter, scanning electron
microscopy (SEM) provides a direct visual observation of the
complex microstructure of a mudstone reservoir, which has good
potential to decipher the heterogeneity of pore size and geome-
try and grain assemblage (Dilks and Graham, 1985; Katz and
Thompson, 1985; Jarvie et al., 2007; Loucks et al., 2009, 2012;
Ross and Bustin, 2009; Schieber, 2010, 2013; Sondergeld et al.,
2010a; Curtis et al., 2011, 2012; Slatt and O’Brien, 2011, 2013;
Walls and Sinclair, 2011; Fishman et al., 2012; Klaver et al., 2012,
2015, Milliken et al., 2012, 2013, 2014; Passey et al., 2012;
Bohacs et al., 2013; Dong and Harris, 2013; Driskill et al., 2013;
Giffin et al., 2013; Pommer and Milliken, 2015; Saidian et al.,
2015; Milliken andOlson, 2016; Nole et al., 2016; Schieber et al.,
2016). It can also illustrate the distribution of resolvable porosity
associated with OM and minerals. Quantification of nano- to mi-
croporosity and pore structure is important for evaluating the
storage capacity and flow regime in unconventional reservoirs
(Javadpour, 2009; Sondergeld et al., 2010b).

Scanning electron microscopy has been exploited in various
industries because of its potential high magnification and ability
to resolve fine-scale features. Unlike optical microscopy, SEM
uses an electron beam to scan the sample surface, and it generates
images by recording the interaction of the electron beam with
atoms of the specimen at various depths within the sample.
Several types of electrons carrying distinct structural and com-
positional information are generated (e.g., secondary electrons
[SE], backscattered electrons [BSE], etc.), and they differ from
one another in origin, energy, and travel direction (Huang et al.,
2013). Type I SE (SE1) are generated at the point of primary
electron beam with a high angle that allows them to carry surface
topographic information with the highest resolution. Type II SE
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(SE2) are generated when BSE leave the surface of
the specimen at a lower angle. Type II SE add atomic
number contrast to the SE image, which reveals both
topographical and compositional information. The
interaction volume of BSE is much deeper than SE. A
backscattered electron signal depends on the atomic
number; therefore, it contains more compositional
information. (Huang et al., 2013).

Improved physical processing of samples has
provided a significant improvement in SEM analysis
of mudrock. With mechanical polishing, quantitative
analysis of shale is nearly impossible because nu-
merous artificial pores are created because of sample
breakage (Loucks et al., 2009). The ion milling tech-
nique uses a beamof ions to very preciselymill a sample.
By carefully controlling the energy and intensity of
the ion beam, a surface that is flat at the nanometer
scale is produced, resulting in removal of topographic
artifacts and producing clearer imaging of pore struc-
tures and mineral textures (Erdman and Drenzek,
2013), which sheds new light on the nanoscale mi-
crostructure and evolution of pores contained within
the OM and inorganic mineral matrix of mudrock
reservoirs (e.g., Loucks et al., 2009, 2012; Ambrose
et al., 2010; Sondergeld et al., 2010a, b; Curtis et al.,
2011, 2012; Slatt and O’Brien, 2011; Milliken et al.,
2013, 2014). However, ion milling can create some
artifacts, such as curtain effects, and redeposition of
milled minerals. Other artifacts include mineral pre-
cipitation after sample preparation and postcoring pre-
cipitations (Milliken and Olson, 2016). Most of these
artifacts are easy to recognize (Loucks et al., 2012;
Anovitz and Cole, 2015; Milliken and Olson, 2016).
Nole et al., (2016) published a method to circumvent
the artifacts created during ion milling using the dif-
ferences in circularity values in a segmented image.

In SEM (especially SE1 or SE2) images, pore
space is defined by very low grayscale values (dark),
whereas minerals’ surfaces have higher grayscale
values (Hemes et al., 2013; Figure 1). Thresholding
and segmentation of pore space and OM from SEM
images are the beginning of quantitative image
analysis, yet they are challenging on shale samples
because the process of image segmentation does not
necessarily lead to unique solution. On the one hand,
the variation of instrument settings can cause gray-
scale level shift from some images to others. Even
within a single image, the characteristic grayscale
value of OM, minerals, and pores can vary (Anovitz

and Cole, 2015; Figure 2). In addition, imaging ar-
tifacts, especially edge effects at pore boundaries,
make it hard to choose an appropriate segmentation
algorithm (Kelly et al., 2016).

Image segmentation is the process of partitioning
an image into several separate regions. Thresholding
is a simple method for image segmentation (Zhang
et al., 2008). All pixels with grayscale values above
(or below) the threshold value are assigned to a
particular class, such as OM. More than one way
exists to seek an appropriate thresholding method to
segment a two-dimensional (2-D) image (or a three-
dimensional [3-D] volume). One method is manual
thresholding, in which the operator searches the
whole range of grayscale (for an 8-bit image, the
range is from 0 to 255) and find a specific threshold
that contains most of the foreground pixels. Zhang
et al. (2011) explored the lack of consistency with
manual thresholding by systematically studying the
effect of different thresholds on the pores. They test
a grayscale range from 10 to 100, and set 45 to 65 to
be the range that gave reasonable results. But even
within this reasonable range, the estimated porosity
ranged from 4% to 13% (Zhang et al., 2011). Auto-
mated thresholding is preferable not only because it
saves time, but it also helps eliminate human bias or
subjectivity by increasing consistency (Wildenschild
and Sheppard, 2013). Hemes et al. (2013) used a
combination of thresholding and Sobel edge detec-
tion algorithms to segment the pores, then used Esri
ArcGIS (geographic information system software) to
manually correct the inaccurate pore segmentations
(also Klaver et al., 2015). This methodology involves a
large amount of manual correction of the segmentation,
so it is very time intensive when dealing with large SEM
images. Kelly et al. (2016) employed a comprehensive
image analysis workflow. They compared two different
image segmentation methods. One is a fuzzy-logic,
membership function–based, c-means centroid search
“soft thresholding.” The other is histogram-based
thresholding with implementation of a level set
method. In many cases, the level set contours caused
overestimation of the OM-hosted porosity. Neither
image segmentation method provided large enough
connectivity. A consistent, efficient, and trackable
method of image analysis with high accuracy is very
much needed for nanoscale porosity typical ofmudstones.

Sezgin and Sankur (2004) reviewed 40 different
image thresholding methods and classified them into
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6 categories based on the information they exploited:
histogram shape, clustering, entropy, object attribute,
spatial methods, and local methods. Among all these
methods, for SEM images of rock samples, Zhang
et al. (2011) recommended using top-hat segmen-
tation. This algorithm picks up a peak or valley
based on a local criterion. Yet, a threshold still needs
to be chosen, and for the reasonable grayscale range
discussed above (from 45 to 65), the porosity results
varied from 7% to 3.5%. Because of the local variance
we noticed in our images (Figure 2) and in a large
number of images that have been published over the
years, we hypothesize that local thresholding that
adapts the threshold value on each pixel to the local
image characteristics (Sezgin and Sankur, 2004) is
more promising than global thresholding.

Currently, no standard workflow exists for ac-
quiring petrophysical properties (e.g., porosity and
OM richness) from SEM images of organic-rich shale.

We introduce a workflow for quantitative SEM image
analysis that improves consistency and efficiency of
results, and we demonstrate the applicability of the
workflow for investigating pore structure and OM
character. The resulting quantification can contribute
to improving our knowledge about heterogeneity
of pore systems and OM in mudrock and other fine-
grained rocks and to better understand hetero-
geneity’s factor in controlling the reservoir properties
in oil and gas exploration and production. Pore
size and type distribution are also associated with
facies and sequence stratigraphy position as well as
fabrics.

Critical questions to address in quantitative im-
age analysis of organic-rich mudrock are the fol-
lowing: (1) how to choose a nonbiased threshold to
segment pore space and OM from SEM images and
(2) how to separate OM-hosted pores from the whole-
pore system? These questions illustrate a common

Figure 1. (A) Locations of the three study wells. Contours depict regional averages of vitrinite reflectance (modified after Zagorski et al.,
2012 and used with permission of AAPG). (B) Overview of the ion-milled region and scanning electron microscopy (SEM) area; the red
rectangle indicates the locations of the smaller field of view SEM images, notice the stringers of organic matter (OM) were avoided. (C)
Sample type II secondary electron SEM image illustrating major rock facies (high density minerals, OM, and pore space) seen in SEM
image of shale. The remainder of the image is the inorganic mineral matrix of mudrock, which typically has a density between 2 and 3 g/cm3.
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challenge associated with image analysis: reproduc-
ibility, commonly addressed subjectively by the op-
erator, but can be subject to bias and inconsistency.
We test this workflow with our own samples and an
image donated by Guochang Wang from St. Francis
University by comparing our results with a reference
data set derived from manual pore picking from the
same images.

DATA AND METHODS

Data for this research consist of 32 core samples
collected from 3 wells penetrating the Mahantango
Formation and Marcellus Shale in the Appalachian
basin (Figure 1A). Samples range in depth from7015.00
to 7778.15 ft (2138.17 to 2370.78 m). For this study,
the core samples were ion polished at Ingrain’s Digital
Rock Physics Lab with Gatan Ilion+ argon ion pol-
ishing system. No conductive coatings were applied
to the milled surfaces. An area that is approximately
1 mm by 500 mm is polished (the roughly triangular
area in Figure 1B). A 2-D SEM overview image is
taken with a field of view of approximately 750 mm
(Figure 1B). The red rectangle within the overview
indicated where the smaller field of view 2-D SEM
separate images were acquired (Figure 1C). Ap-
proximately 10 locations per sample were imaged
with Carl Zeiss SEM systems at a low beam energy of
1 kV. Both BSE and SE2 detectors are used to capture

separate images. Images from well A1 and G55 are
taken at resolution of approximately 15 nm/pixel,
whereas images from well CS1 are taken at resolu-
tion of 10 nm/pixel (e.g., Figures 3–5). All samples
were viewed perpendicular to bedding (Figure 1C).
Type II SE SEM images are used in this research. The
SEM images were processed with ImageJ and Fiji
(Schindelin et al., 2012, 2015; Schneider et al., 2012).
Median filter with a radius of two pixels was applied
before quantification to reduce the noise in the images
(Gallagher and Wise, 1981; Culligan et al., 2004, 2006;
Kelly et al., 2016; Nole et al., 2016).

The surface of shale sample shown in Figure 6
was prepared by an argon ion polisher with a Jeol IB-
09020CP and coded with platinum. The images
were acquired by concentric backscattered detec-
tor using an FEI Helios NanoLab 600i field-
emission SEM. The working distance is 3.3 mm,
and the image was taken at an accelerating volt-
age of 8 kV.

Total organic carbon (TOC) content was quan-
tified using the source rock analyzer, and the results
were expressed in weight percentage. Approxi-
mately 60 to 100 mg of pulverized rock was ana-
lyzed. Free hydrocarbons (S1) and hydrocarbons
result from thermal cracking of nonvolatile OM (S2)
are quantitatively detected and reported as milli-
grams of hydrocarbon per gram of rock. The free
CO2 (S3) produced during pyrolysis of kerogen is
reported as milligrams of CO2 per gram of rock.
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Figure 2. (A) A sample image featuring the local variance of grayscale of pores. (B) Grayscale profile of AA9, the dashed line is the
optimal threshold line. Notice the optimal threshold changes along the profile. The location of AA9 is shown in (A).
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Residual carbon (S4) is also measured and reported
as milligrams of carbon per gram of rock. Total or-
ganic carbon is calculated by %TOC = 0.1 · (0.082 ·
[S1 + S2] + S4) (Espitalie et al., 1985). Organic
matter abundance values in volume percent is the
volume percent of OM calculated from the bulk
TOC (weight percent) by assuming an OM density
of 1.45 g/cm3 (Milliken et al., 2013).

Image Analysis Workflow

We illustrate a workflow that automatically thresh-
olds an SEM image by adaptive local thresholding
(Phansalkar thresholding) and Otsu thresholding.
Then, a methodology is presented to further segment
porosity between OM and mineral matrix by Image
Calculator. All steps are undertaken with Fiji, which
is an open-source software developed by the National

Institutes of Health. Every step of the methodology is
trackable, so it offers not only a final numeric result,
but also precision and repeatability. The methodol-
ogy is a step toward establishing a consistent and ob-
jective numerical model of the visible nanoscale pore
structure of mudrock observable in SEM images.
Results demonstrate that this method is highly effi-
cient and provides a high degree of precision and re-
peatability in image processing, advancing the study of
pore structure of mudrock.

Segmentation of the Pore Space

Thresholding is the first and most important step of
image segmentation to discriminate and quantify
pores versus matrix. The process of image thresh-
olding does not necessarily yield a unique solu-
tion for a threshold. The main reason is variation in

Figure 3. Illustration of the pore segmentation on test sample (A) (from well CS1, 7133.75 ft [2174.37 m], Marcellus Shale), (B) (from
well G55, 7162.45 ft [2183.11m], Marcellus Shale), and (C) (from well A1, 7620.10 ft [2322.61 m], Mahantango Formation). (A1–C1)
Original images. (A2–C2) Manually picked results with yellow outlines highlight the pore border. (A3–C3) Automatic thresholding results
using the proposed method.
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illumination level resulting from different voltage of
current, or simply caused by different instruments, in
which case, a single type of rock component (e.g.,
OM) will show different absolute grayscale ranges.
Therefore, a universal thresholding system is unlikely
to exist, and selecting an appropriate method to find

thresholds is of great significance. Because humans
cannot distinguish different grayscales consistently,
choosing thresholds manually introduces subjectivity
and uncertainty because of the lack of consistency
between operators, and even between instances for
the same operator (Anovitz and Cole, 2015).

Figure 4. Illustration of applying Otsu thresholding to segment the organic matter (OM). Grayscale histograms are listed next to the
original image and segmented OM. The blue dash line indicates the postulated optimal segmentation strategy. Two clusters in the
histogram of the original image represent the OM and the mineral matrix. This bimodal distribution of grayscale makes it feasible to
segment the image with Otsu thresholding.
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To address this challenge, we recommend adap-
tive local thresholding. Sauvola and Pietikainen
(2000) published a method that determines a local
threshold for each pixel based on local variance and
standard deviation. This method was originally
designed for document analysis. When uneven il-
lumination or stains exist, global thresholds cannot
offer consistent results (Sauvola and Pietikainen,
2000). In certain areas, the grayscale of pores is
equal to that of OM in other areas, which causes
significant error when trying to quantify the poros-
ity (Figure 2). The abovementioned local variance
is largely caused by “shallow dipping of a pore
boundary” (also known as pore backs [Canter et al.,
2016, p. 21]), which results in low grayscale gra-
dients in a certain region (Hemes et al., 2013). The
optimal threshold strategy is to determine a local

threshold for each pixel based on local variance as
demonstrated in Figure 2A, B. Phansalkar et al.
(2011) applied this method to cytological image
analysis and noticed a problem. When the contrast in
the local neighborhood is very low, the relatively dark
regions will be removed (categorized as background).
In cytological (SEM) images of shales, these dark
regions are also foreground. They fixed this prob-
lem by using a new equation to calculate the local
thresholds

Tðx; yÞ = mðx; yÞ
�
1 + pe-q$mðx;yÞ + k

�
sðx; yÞ
0:5

- 1
��

(1)

in which T(x,y) is the local threshold, m(x,y) is the
mean, s(x,y) is the standard deviation, and k equals 0.5,
p equals 2, and q equals 10 (Phansalkar et al., 2011).

Figure 5. Illustration of the organic matter (OM) segmentation on test sample (D) (from well G55, 7201.10 ft [2194.90 m], Marcellus
Shale), (E) (from well CS1, 7136.85 ft [2175.31 m], Marcellus Shale), and (F) (from well A1, 7729.50 ft [2355.95 m], Marcellus Shale).
(D1–F1) Original images. (D2–F2) Manually chosen results with blue outlines indicating the OM border. (D3–F3) Automatic thresholding
results using the proposed method.
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When applying adaptive local thresholding, the
operator needs to choose a window size. It gives a
limit of the region within which the local threshold
will be computed with local adaptive thresholding.
When the radius is too big, it will operate the same as
global thresholding. Whereas when it gets too
small, the local variance will be enhanced and makes
it harder for the pores to be discriminated from the
rock matrix. Sauvola and Pietikainen (2000) rec-
ommend to set the window size to 10 to 20 pixels
(Sauvola and Pietikainen, 2000). Figure 3 shows the
result of manually picked pores versus automated
segmentation.

Segmentation of the Organic Matter

Otsu’s method is used to threshold OM and pore
space. This method was developed by Nobuyuki
Otsu in 1979 (Otsu, 1979), and it automatically
performs clustering-based image thresholding. It

reduces a grayscale image to a binary image. The
algorithm assumes that the image contains two classes
of pixels that are distributed in a bimodal histogram
(foreground pixels and background pixels). Fore-
ground pixels are the OM and background pixels
are the mineral matrix. The optimum threshold is
established by minimizing the weighted sum of in-
traclass variances of the foreground and background
pixels, or equivalently (because the sum of pairwise
squared distances is constant), maximizing the in-
terclass variance (Figure 4).

The intraclass variance is defined as a weighted
sum of variances of the two classes.

s2
vðtÞ = v0ðtÞs2

0ðtÞ + v1ðtÞs2
1ðtÞ (2)

Weights v0,1 are the probabilities of the two classes
separated by a threshold, t and s2

0;1, are variances of
these two classes. One of the two classes is the darker
part of the image, which is OM and pore space. The
other class is the rest of the input image, which is

Figure 6. Application of the proposed workflow on an independently supplied image. (A) Original image; (B) automated pore seg-
mentation with red outlines highlighting the border of pores, yellow arrows depict the low-angle deepening pore border, and blue arrows
depict the difference between manual and automated segmentation; (C) pores manually segmented by an independent third party; and
(D) automated segmented organic matter. Image courtesy of Guochang Wang.
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minerals. Because we already have the pore space
segmented by now, it can be subtracted from the
Otsu thresholding result with the Image Calculator
feature in Fiji or ImageJ, and the OM remains.
Figure 5 shows the result of manually picked OM
versus Otsu thresholding.

Determining Porosity Associated with
Organic Matter and Minerals

The OM-hosted porosity in organic-rich shale res-
ervoirs is formed during thermal maturation of OM
(e.g., Loucks et al., 2009, 2012; Schieber, 2010,
2013), which is of great significance in evaluating
the reservoir and understanding the evolution of
pores in shale (e.g., Milliken et al., 2013). Loucks
et al. (2012) summarized classification of pore types
in shale and present a self-explanatory classification
system featuring interparticle, intraparticle, and OM
pores. Milliken et al. (2013) studied the Marcellus
Shale and subdivided OM pores into three types.
Pommer and Milliken (2015) further defined OM–

mineral interface pores as pores between mineral
particle and OM and categorized this as mineral-
associated rather than OM-hosted pores. In this re-
search, we will follow the Pommer and Milliken (2015)
classification.

Other than picking pores manually, a detour can
be taken. If the pores within segmented OM (e.g.,
Figure 5D3, E3, F3) can be digitally infilled, the
percentage of OM plus OM-hosted porosity in the
image can be determined. The infilled OM can
be subtracted from the total pore space map (e.g.,
Figure 3A3, B3, C3) with Image Calculator. The
Image Calculator function of ImageJ assumes that
subtracting a value (infilled OM) from a null value
will result in a null value. Because no OM exists on
the total pore space map after the subtracting, there
will only be pores that are not hosted by OM. The
OM parts will remain as null value. The result is the
mineral-hosted porosity. The OM-hosted porosity
is simply determined by subtracting mineral-hosted
porosity from the total porosity.

When trying to infill the void space in OM,
several different cases exist. The ideal case is pore
space fully enclosed within OM. This type of OM-
hosted pore can be directly filled with the Fill Holes
feature of Fiji or ImageJ after the OM is segmented.

Another case is pores located very close to the border
of OM, which, after segmentation, is not fully en-
closed in OM. For this type of pores, we recommend
using the Dilate feature in Fiji or ImageJ to add pixels
to the edges of OM. By doing so, the gap of open
borders of OM can be connected. After that, run Fill
Holes and Erode (another feature of Fiji or ImageJ)
to remove the same amount of pixels from the edges
(Figure 7). This operation can also compensate the
bright ring created because of the topographical ar-
tifact and mineral edge charging.

To summarize, a 2-D grayscale SE2 SEM image
undergoes automatic thresholding and segmenting
into several rock components. Next, segmented bi-
nary images of pore space and OM are produced.
Then, OM is digitally infilled. With Image Calcula-
tor, the infilled OM is subtracted from the total pore
space map to generate the mineral-hosted pore space
map. Mineral-hosted pores can then be subtracted
from total pore space to generate OM-hosted pore
map. The percentage of each rock components (OM,
OM-hosted porosity, mineral-hosted porosity, and
total porosity) can be calculated by Particle Analyzer
in Fiji or ImageJ. Subsequent statistical measure-
ments can be applied to each component, such as
equivalent circular diameter, pore width, and cir-
cularity (supplementary material available as AAPG
Datashare 107 at www.aapg.org/datashare).

RESULTS

Figure 3 demonstrates the porosity segmentation
results of three samples. Sample A comes from well
CS1 and features SE2 image with a substantial
backscatter component so that the contrast between
minerals, OM, and pores is very vivid. The pore
system is a combination of both OM-hosted and
mineral-hosted pores. Sample B comes from well
G55, and most pores in this image are within OM.
Sample C comes from well A1, and the pore system
is mostly mineral-hosted pores. Most of the pores
are formed by the chaotic stacking pattern of clay
particles. Figure 3A2, B2, and C2 shows the manual
picking results, with yellow lines highlighting the
pore borders. Figure 3A3, B3, and C3 shows the
automatic thresholding results. To reduce the effect
from noise, the minimum pore size analyzed in this
research is a three-by-three cluster of pixels (McCoy,

1482 Quantify Organic Matter–Hosted Porosity from Scanning Electron Microscope Images

http://www.aapg.org/datashare


2005), which represents 30 nm in CS1 samples and
45 nm in A1 and G55 samples.

Figure 5 shows the results of OM segmentation
in samples D, E, and F. Figure 5D2, E2, and F2 shows
manual picking OM with blue lines highlighting the
OM borders. Figure 5D3, E3, and F3 shows auto-
matic thresholding results. The manually picked re-
sults are listed as a reference data set in this research,
although we have to admit the fact that quantifica-
tion of SEM images of shales can hardly lead to a
result that can be used as ground truth because of
multiple reasons we discussed earlier in this paper.
The result is compared with TOC in weight per-
cent. Richness of OM from image analysis has a
strong positive correlation with TOC. The com-
parison of automatic threshold result with the
reference data set (manual pick result) is listed in
Table 1.

We also tested one image from a Chinese shale
sample, which was donated by Guochang Wang
from St. Francis University. The result is demon-
strated in Figure 6.

Figure 8 illustrates the result of separating OM-
hosted porosity and mineral-hosted porosity by the
proposed workflow.

DISCUSSION

Sensitivity Test

We conducted a sensitivity test on the effect of the
thresholding parameter on the pore segmentation result,
using samples A, B, and C. The local threshold window
radius was tested in a range from 10 to 20 pixels
(Figure 9). For sample A, we observed a gradual in-
crease of the porosity result from 3.18% to 3.63%
when the local threshold window radius increases
from 10 to 20. They showed a very good linear
correlation. For sample B, the porosity increases from
1.09% to 1.33% in the same window range. Sample
C shows a different trend. The porosity readings at
10-, 15-, and 20-pixel window radii are 1.26%,
1.28%, and 1.27%, respectively. The porosity change
is negligible, which indicates that thresholding win-
dow radii do not affect segmentation results in
sample C case. This helps explain the very low co-
efficient of determination (R2) value of sample C in
Figure 9. Based on this observation, if we choose
15 pixels as the thresholding window radius, then for
sample A, the porosity in a 10- to 20-pixel window
changes within 0.25%. For sample B, the porosity

Figure 7. Processes of filling pore space within segmented organic matter (OM). The X symbol stands for the radius of dilation. Pores
fully enclosed by OM can be filled directly. For OM that has pores on the edge, it needs to go through Dilate by X (number of pixels), Fill
Holes, then Erode by X. The infilled pores will not be affected by the erosion. The demonstration is not associated with a specific scale
because it can be applied to a range of scale.
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value changes approximately 0.12%. The consistency
of the adaptive local thresholding is assumed to be
acceptable and is completely repeatable if using the
same window size on the same image. The manually
picked results for these three samples are 3.50%,
1.18%, and 1.29%, respectively. We recommend
choosing 15 pixels as the default local threshold
window radius, because for samples A and B, it
produces the median value of porosity so that the
variance in result is minimized. On sample C, the
result is not very sensitive to the radius setting. By
setting the window radius to a fixed number, we
can reach a consistent result.

All three samples we used to demonstrate the
method are SE2 SEM images, but their pore types
are different. In sample C, most of the pores are
hosted by clay particles. The contrast between pores
and minerals is very vivid, in which case, the porosity
readings are very similar through different thresh-
olding window radii.

We also tested the effect of image resolution.
The original images were saved as 600 pixels per inch
(PPI). We change the resolution by reducing the
pixel density and then run the segmentation auto-
matically and manually. We tested 300, 100, and
75 PPI. For wells A1 and G55 (original resolution
15 nm/pixel), these changes represent an analysis of
30 nm/pixel, 90 nm/pixel, and 120 nm/pixel, re-
spectively. For well CS1 (original resolution 10 nm/
pixel), these changes represent an analysis of 20 nm/
pixel, 60 nm/pixel, and 80 nm/pixel, respectively.
Although each sample trend is different, we observe
an overall decrease in porosity results when reducing
the input image resolution (Figure 10). For example,
in reducing the resolution from 600 to 300 PPI,
samples A, B, and C lost 0.36%, 0.51%, and 0.21%
visible porosity, respectively, by automatic thresh-
olding, and 0.49%, 0.30%, and 0.07% visible porosity,

respectively, by manual picking. This change is much
higher than the effect of threshold window size.
Also, we notice that the visible porosity loss of sample
C is lower than the other two samples. We attribute
this to the fact that sample C has the least OM con-
tent, which makes the pores easier to be picked.
Although samples A and B have significant amounts
of OM-hosted pores, when the pixel density is being
lowered, pores fade in OM and make them hard to
recognize. This phenomenon has also been noticed
during image acquisition. Pores could fade inOMwith
higher electron beam voltage, especially under BSE
mode; this is a major reason that a low and consistent
acquisition energy should be maintained (Pommer and
Milliken, 2015).

Challenges

Ion-milling SEM is a powerful tool to study mu-
drock, yet it faces significant challenges. The first is
the extremely small area of investigation to provide
sufficient resolution, especially under high magnifi-
cation. Typically, the area of investigation is tens of
square micrometers. An upscale from pore-imaging
to compositional mapping (e.g., energy dispersive
x-ray spectroscopy elemental mapping), then to thin
sections scale is an immediate problem. In addition,
vertical and lateral heterogeneity in laminated mu-
drockmay vary at the micrometer to centimeter scale
(Lazar et al., 2015). To address this issue, large
mosaics of SEM images have been used to obtain
more representative information about the micro-
structure of mudrock (Klaver et al., 2012, 2015;
Giffin et al., 2013; Hemes et al., 2013, 2015; Houben
et al., 2013, 2014; Deirieh, 2016). These studies
acquired hundreds of images and stitch them to-
gether to cover a large area. Then, a representative

Table 1. Comparison of Manual Picking Results with Automatic Threshold Results

A B C D E F

Manual picking porosity, % 3.5 1.18 1.29
Automatic threshold porosity, % 3.43 1.22 1.28
Manual picking OM, % 25.94 27.3 32.92
Automatic threshold OM, % 25.31 27.22 32.06

Images from samples A–F are listed in Figures 3 and 5.
Abbreviation: OM = organic matter.
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elementary area (REA) can be determined, repre-
senting the area above which the area fraction of
minerals and porosities does not change significantly.
However, the REA differs significantly between dif-
ferent samples (Klaver et al., 2012, 2015; Houben
et al., 2013, 2014; Hemes et al., 2015; Deirieh, 2016;
Kelly et al., 2016). Therefore, it is still very chal-
lenging to tell whether an SEM image or a series of
images are representative of the mudrock. Last, but
not least, even when representativeness is achieved, a
significant fraction of the pore system is smaller than
the resolution of SEM, especially those pores hosted
by OM (Milliken et al., 2013).

Manual Picking versus Automatic
Thresholding

To achieve the highest precision when categorizing
OM pores and inorganic pores, some scientists pre-
fer manual pore interpretation over automatic pore
recognition. As a matter of fact, no absolutely reli-
able pore segmentation exists; therefore, we have
chosen a manually picked result as the reference
data sets, although we are aware of the limitation of
such a data set. Sometimes, an interpretation of the
SEM images is necessary because of artifacts, espe-
cially open fractures and redeposition of the milled

Figure 8. Segmentation results of a test image illustrating organic matter, filled organic matter, total porosity, organic matter–hosted
porosity, and mineral-hosted porosity (test image from well CS1, 7114.50 ft [2168.50 m]). Quantification can then be applied to each
segmented rock facies.
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materials. However, when dealing with a large quan-
tity of images to obtain a statistically REA with a
heterogeneous mudrock, manual interpretation can
be very time consuming and is subject to operational
bias.

The fast development of improved SEM imaging
techniques, especially broad ion beam milling, make
it urgent to have a consistent methodology of image
analysis. The cutting-edge mosaic method and multi-
beam SEM have begun to address a long-lasting
problem in SEM, namely representativeness, by
scanning a much bigger area compared with nor-
mal SEM. The analysis results are not as strongly

affected by the area of investigation and the selec-
tion of region of interest. When representativeness is
no longer the dominating issue, maintaining the
consistency of the results becomes more impor-
tant. If results are not consistent, one can hardly
compare one result with another. Also, the effi-
ciency becomes an issue because of the size of
the scanning area and the high resolution, which
makes manually processing an image very time
consuming.

Effects of Artifacts on Image Analysis

Edge effects are quite common in SEM images of
shales. Nonplanar surfaces, such as pore edges, give
off a greater electron signal than planar regions,
which results in brighter pixels (Kelly et al., 2016).
So, these surfaces appear to be a bright “ring” sur-
rounding the OM or minerals (Kelly et al., 2016).
This makes it challenging to segment porosity auto-
matically. However, because the edge effect increases
the local variance, the segmentation algorithm pro-
posed in this research actually takes advantage of this
type of artifact when it occurs.

This method is created based on Zeiss SE2 SEM
images. We also tested our workflow on an indepen-
dently provided image (an FEI BSE SEM image), and
the result is shown in Figure 6. The major disagreement
between our automatic segmentation and independent

Figure 9. Sensitivity test of local threshold window radii and
segmentation result (porosity). R2 = coefficient of determination.

Figure 10. Input image resolution represented by pixel density and porosity (see details in sensitivity test). Solid lines are automatic
thresholding (AT) results, whereas dashed lines are manual picking (MP) results. PPI = pixels per inch.

1486 Quantify Organic Matter–Hosted Porosity from Scanning Electron Microscope Images



third party’s manual picking is marked by the yellow
and blue arrows. The method we propose can handle
the edge effect very well. But certain very shallow pores
exist that are incorrectly labeled as OM because those
shallower locations are brighter than deeper pore loca-
tions. A similar kind of artifact has also been noticed by
Hemes et al. (2013). They referred to this problem as a
low-angle deepening pore border, which is marked with
yellow arrows in Figure 6B. Canter et al. (2016) argue
that the electron beam signal is being reflected from
the back of the pore. Disagreements that are marked
with blue arrows, unlike other pores or low-angle pore
borders, are caused by surface roughness or very shal-
low dents. For this image, the automated segmented
porosity is 2.07%, whereas the manually picked po-
rosity is 3.08%; the pores depicted by blue arrows
account for 0.75%. We therefore suggest the correct
porosity result should be 2.33%, and our method
captured 89% of the whole-pore system. The prob-
lematic pores in Figure 6 are all very shallow, so that
the detector received signals from the bottom of pores,
and, because they are OM-hosted pores, the bottom is
obviously OM. The effects and pore back problem
seem to be more obvious in the BSE image (Figure 6)
than that in SE2 images because the interaction volume
of BSE is significantly deeper than SE2. Not to men-
tion, the BSE image was acquired under a higher

accelerating voltage (8 kV in this research),
which leads to a deeper penetration of the electron
beam. Therefore, from a quantitative image analysis
point of view, a low beam voltage (1 kV in this re-
search) should be preferred when imaging pores in
mudrock reservoirs, especially those OM-hosted pores.

Image Analysis of Organic Matter and
Porosity

In this research, most OM in the Mahantango and
Marcellus mudrock reservoirs is unstructured. The SEM
imaging allows the visualization of the spatial distri-
bution of OM in mudrock. Our data show that
the richness of OM in mudrock observed in SEM
is correlated with the bulk rock TOC content
(Figure 11). The OM content determined by SEM
image analysis is much higher than TOC value,
which is caused by two main reasons. On the one
hand, OM content measures the whole organic
materials (kerogen, pyrobitumen, etc.) that are or-
ganic compounds with complicated molecular struc-
ture. For example, the elemental composition of
kerogen from Green River Shale is approximately
C215H330O12N5S1 (Robinson, 1976). However,
TOC only measures the carbon part. On the other
hand, TOC is in weight percentage, whereas OM

Figure 11. Correlation between organic matter captured by scanning electron microscope (SEM) images and bulk rock total organic
carbon (TOC). Notice the x- and y-axis scales are not the same. R2 = coefficient of determination.
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content measures the area, and it is a proxy for
volume percentage. The density of OM is much
lower than the rest of themudrock formation or rock
bulk density. Adding the abovementioned two fac-
tors together, OM content can be more than three
times the value of TOC. Given the representative-
ness of OM measurements varies (Figure 11), an
REA for OM, as well as porosity, needs to be
studied, and they are very likely different for a
given sample. Although this technique can offer a
comprehensive understanding of samples in terms of
OM, one should not rely on individual SEM images
measurement. Instead, multiple images (10 to 15 in
this research) should be acquired.

The underestimation of porosity remains an issue
for SEM, especially 2-D SEM (Loucks et al., 2009;
Milliken et al., 2013). The porosity values from SEM
images are plotted in Figure 12. Each one of the data
points is an average value of 10 to 15 SEM images.
Compared with the Gas Research Institute (GRI)
method (crushed core analysis), SEM underesti-
mates the porosity (Figure 12), presumably because
SEM cannot resolve and detect pores below its res-
olution of 10 or 15 nm/pixel (in this research),
whereas GRI can detect porosity contribution from
pores much less than 10 nm (Luffel and Guidry,
1992). The pervasive existence of noise makes it
hard to rely on only a few pixels to identify a pore. In
this research, we followed McCoy's (2005) sug-
gestion and set the minimum pore size at a three-

by-three cluster of pixels. Therefore, the actual
minimum pore size analyzed in this research is 30 nm.
Milliken et al. (2013) studied samples from the
Marcellus Shale and found an unexpected negative
correlation between TOC content and SEM visible
porosity, althoughmost of the visible pores are hosted
by OM (Milliken et al., 2013). Although SEM can
achieve a resolution of approximately 1 nm, the area
of investigation is reduced to the point at which the
observations do not provide an REA. Additionally, 2-
D SEM images show slices or cross-sections of sam-
ples commonly in the vertical orientation, so 3-D data
about the pore space that may be elongated in the
third dimension are not measured.

The limitation of SEM should also be taken into
consideration. Increasing abundance of OM corre-
lates with decreasing visible porosity in SEM images
in the Marcellus Shale (Milliken et al., 2013). When
dealing with samples that have a large part of pores
below the resolution of SEM, the porosity value from
images itself has limited reliability or utility.

CONCLUSION

Ion-milling SEM is a direct analytical technique to
facilitate characterizing the microstructure of mu-
drock reservoir at a resolution of nanometers. Quan-
titative analysis provides important information
regarding pore structure, porosity associated with
OM or inorganic minerals, and organic richness.
Quantification of SEM images of mudrock samples
remains challenging because of the lack of an automated
thresholding and segmentation method. Manually
picking the threshold is time consuming, and main-
taining interlab and intralab consistency is a challenge.
Automated segmentation of SEM images using the ap-
proach described here offers benefits over manual
methods. The key conclusions include the following.

1. A new workflow is described to quantify po-
rosity and OM content from SEM image analy-
sis. The segmentation of pore space and OM is
based on adaptive local thresholding (Phansalkar
thresholding), Otsu thresholding, and Image
Calculator, all of which can be realized in public
domain software such as ImageJ and Fiji. The
workflow improves the consistency and efficiency
of quantitative image analysis.

Figure 12. Comparing scanning electron microscope (SEM)
visible porosity and Gas Research Institute (GRI) porosity. OM =
organic matter; TOC = total organic carbon.

1488 Quantify Organic Matter–Hosted Porosity from Scanning Electron Microscope Images



2. The thresholding method segments the image
based on local variance. It allows us to take ad-
vantage of the very common, yet challenging, edge
effect. During the thresholding and segmentation
processes, no specific threshold is required, thus
avoiding potential bias. The workflow presented
here requires minimal supervision, or extra work.
However, very shallow depressions require addi-
tional work to provide a solution.

3. The only parameter that needs to be set when
running segmentation of pores is the local thresholding
window size. Based on our sensitivity test result,
for our pore size range, we recommend using 15
pixels for a 600-PPI image, although the result is not
very sensitive to the window size (in a range between
10 and 20). The quality of the input image makes
bigger contribution to the segmentation result. Low-
ering the resolution as well as increasing the electron
beam voltage will make pores hard to recognize.

4. Mineral-hosted pores are easier to identify be-
cause the contrast between the foreground (pore
space) and background (minerals) is larger com-
pared with OM-hosted pores.

5. This method not only provides the porosity
values, but also yields the distribution of pores
and OM, a potential input for further research.

6. This method is created based on Zeiss SE2 SEM im-
ages. We also tested it on an FEI BSE SEM image. It
successfully captured 89% of the pores when com-
paredwith manual segmentation of the BSE image.

7. Quantitative visual analysis of 2-D SE2 SEM
images underestimates the porosity compared
with the GRI method. This may be the result of
differences in pore size resolution between the
two radically different methods.
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