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Hydraulic fracturing is one of the industrial processes behind the
surging natural gas output in the United States. This technology
inadvertently creates an engineered microbial ecosystem thousands
of meters below Earth’s surface. Here, we used laboratory reactors
to perform manipulations of persisting shale microbial communities
that are currently not feasible in field scenarios. Metaproteomic and
metabolite findings from the laboratory were then corroborated
using regression-based modeling performed on metagenomic and
metabolite data from more than 40 produced fluids from five hy-
draulically fractured shale wells. Collectively, our findings show that
Halanaerobium, Geotoga, and Methanohalophilus strain abun-
dances predict a significant fraction of nitrogen and carbon metab-
olites in the field. Our laboratory findings also exposed cryptic
predatory, cooperative, and competitive interactions that impact
microorganisms across fractured shales. Scaling these results from
the laboratory to the field identified mechanisms underpinning bio-
geochemical reactions, yielding knowledge that can be harnessed to
potentially increase energy yields and informmanagement practices
in hydraulically fractured shales.

hydraulic fracturing | metaproteomics | Stickland reaction |
methanogenesis | metagenomics

In 2016, natural gas became the main source of electricity in the
United States—the first time in history that a natural resource

other than coal has provided a bulk of the nation’s power (1). Sixty
percent of the natural gas produced in the United States comes
from hydraulically fractured shales, a majority of which is gener-
ated in Ohio, West Virginia, and Pennsylvania (1). Hydraulic frac-
turing (HF) is the high-pressure injection of water, chemical additives,
and proppant into the Earth’s subsurface to fracture hydrocarbon-
bearing shales, thereby releasing economically important trapped
natural gases. This process unintentionally creates a new microbial
ecosystem, where a subset of surface-derived microorganisms pro-
liferate in shales more than 2,500 m below the Earth’s surface.
Recent research suggests that microbial life in shales may impact

gas and oil production efficiencies (2, 3). For instance, the persistence
of methanogens in these ecosystems may contribute to increased
biogenic methane formation by Methanohalophilus, while negative
impacts, such as corrosion and sulfidogenesis (“souring”), are asso-
ciated with other prevalent microbial community members including
Halanaerobium (2–9). To grow in fractured shales, microorganisms
must adapt to increased salinities and reduced chemical conditions
where fermentative metabolisms prevail (2). Given these selective
pressures, persisting shale-hosted microbial communities are con-
strained to several halotolerant members, including Halanaerobium
and Methanohalophilus, which co-occur across every fractured shale
sampled to date (2). Metagenomic and metabolite analyses from a
single well suggested that glycine betaine (GB), an amino acid de-

rivative, may play an important role as an osmoprotectant and as an
energy source for these co-occurring shale organisms (8). However,
the GB-supported metabolisms employed across geographically and
geologically distinct fractured shales remain unknown.
Here, we use a combination of field investigations and detailed

laboratory microcosm experiments to define the metabolic net-
work supported by GB. First, we sample GB prevalence and
concentration in the field using temporally collected fluid samples
collected from Utica and Marcellus fractured shale wells. We then
established laboratory microcosm reactors with Utica-produced
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fluids collected 96 d after HF and used proteomics to define the
impacts of GB on persisting shale microbial communities. To ex-
tend these laboratory-discovered processes back to the field scale,
we conducted a paired metagenome and metabolome analysis from
over 40 samples collected across five fractured shale wells located in
the Appalachian basin. This comprehensive dataset offers unique
insight into previously cryptic amino acid-based metabolisms that
may sustain life in these economically important ecosystems.

Constructing Model Shale Microbial Communities in the
Laboratory
To understand the broader importance of GB across geographically
distinct fractured shales, we profiled GB concentrations in input
(fluids injected during HF) and produced fluids from five shale
wells sampled up to 600 d after HF (Fig. 1 and Dataset S1). GB was
present in all hydraulically fractured shale wells, with two of the five
wells showing a trend where GB is not detected in the input fluids,
but is then produced and maintained in situ (Marcellus 1 and Utica
2). For these two wells, GB was positively correlated to salinity
(Pearson, R = 0.87, P < 0.001), corroborating our prior hypothesis
that this metabolite is likely microbially synthesized in situ to sup-
port microbial adaptation to brine-level salinities (8). In the other
three wells, GB was detected in the input fluids, albeit at low
concentrations (>0.8 μM). This could be a result of operators using
recycled produced fluids as input fluids or the exogenous addition of
GB as a surfactant amended to input fluids (10) (https://fracfocus.
org/chemical-use). GB dynamics in these wells hint at both micro-
bial utilization and production; however, it is also possible that GB
is leached from the dissolution of shale rock (Fig. 1).
To understand the possible sources and metabolic roles of this

prevalent metabolite, we generated laboratory microcosms using
produced fluids collected 96 d post-HF (Utica well 2, Fig. 1, red
arrow). To identify the microbial sources of GB, these reactors
were established without shale rock. Triplicate anoxic microcosms
were amended with and without GB in a chemically undefined
medium containing yeast extract (see Materials and Methods for
recipe) and incubated for 20 d, with three time points chosen for
metabolite, metagenome, and metaproteome analyses. Abiotic
controls showed no metabolite changes through the experiment
(SI Appendix, Fig. S1). Time points were collected at the beginning
(T0), at maximum cell density on day 2 (TM), and upon substantial
methane production (1.5 log fold increase from T0) on day 20
(TF) (Dataset S2). Metagenomic sequencing facilitated the re-
construction of four draft genomes belonging to the genera
Halanaerobium, Methanohalophilus, Geotoga, and a novel genus
within the Clostridiales (SI Appendix, Figs. S2 and S3 and Dataset
S3). The organisms from which these genomes were reconstructed
were the only members of the microbial community in both the
GB and non-GB enrichment cultures at all time points (SI Ap-
pendix, Fig. S4). This enrichment reflects the low genus-level di-
versity previously reported in late-produced fluids from Utica and
Marcellus shales (2, 8, 11).
Genomes reported here were estimated to be greater than 93%

complete, with less than 2% contamination, and contained full-
length 16S rRNA genes (Dataset S3). Based on the recently pro-
posed Genomic Standards Consortium standards (12), the genomes
recovered here would be considered high quality. The unassigned
Clostridiales genome is most closely related toDethiosulfatibacter by
16S rRNA gene analysis (∼90% identity, SILVA) and Dethio-
sulfatibacter aminovorans by average nucleotide identity at the ge-
nome level (73.1%) (SI Appendix, Figs. S2 and S3). Following the
naming convention for genomes assembled from metagenomes
(13), we propose the genus name Candidatus Uticabacter based on
the shale formation from which this genome was recovered. 16S
rRNA gene fragments (V4 region) were identical to the near-
complete 16S rRNA gene in our Candidatus Uticabacter genome,
suggesting that members of this genus have been previously de-
tected in a hydraulically fractured shale well in the Sichuan Basin in

China [National Center for Biotechnology Information (NCBI)
SRR2094439.12567.1] (9). Beyond Ca. Uticabacter, the other mem-
bers recovered in our laboratory genomic analyses are routinely
reported in studies from fractured shales across the United States (14–
16). For instance, 16S rRNA genes corresponding to Halanaerobium
and Methanohalophilus are recovered from in all but 1 of these 17
studies (8). Together, these findings demonstrate that the micro-
organisms detected in our microcosms, and likely their metabolic
interactions, are relevant to fractured shale ecosystems.
Next, we used metagenome-resolved metaproteomics to un-

cover the active metabolisms assigned to each genus. A total of
555,973 unique peptides were recovered from 15 metaproteomes,
with an average of 37,046 unique peptides per microcosm sample
(Dataset S4). Across all time points and treatments, a majority of
the proteins analyzed were from the genus Halanaerobium (63%).
Proteins from other members of the microbial community were
also detected, with 15% of total proteins from Methanohalophilus,
11% from Ca. Uticabacter, and 7% from Geotoga (Fig. 1).
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Fig. 1. Area plots show relative GB concentration trends through time across
five HF wells in two shale formations: (Marcellus and Utica), with the number
of samples denoted and plotted on an identical y axis. Inocula for microcosm
experiments were obtained from the well shown in red at the time point
indicated by the red arrow (96 d after HF). Data from one well was previously
reported (8) and is indicated by an asterisk (*). Exact GB concentrations range
from below detect to 8.1 μM and are provided in Dataset S1. Hierarchal
clustering of metaproteomic data are shown from day 2 (TM) and day 20 (TF)
postinoculation of the laboratory microcosm experiment. Stacked bars rep-
resent the relative abundance [normalized spectral abundance factor (NSAF)]
of proteins from each organism indicated by color within each sample. Time
point and microcosm treatment are indicated in black boxes with white text.
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Interestingly, overall protein content and taxonomic assignment
could not be statistically differentiated between the GB and non-
GB treatment at the middle time point, largely driven by the
dominance and conserved metabolism of Halanaerobium across
the two treatments. The final time point (TF) was statistically dif-
ferentiated by treatment, with proteins from Methanohalophilus
enriched in the GB microcosm where methane was produced in
high amounts, while proteins assigned to Ca. Uticabacter and
Geotoga were more enriched in the non-GB microcosm that pro-
duced significantly less methane.

Osmoprotection Mechanisms Enabling Salinity Adaptation
in Laboratory Reactors
Given the hypersaline conditions observed in late (>40 d post-HF)-
produced fluids (Dataset S1), we profiled microcosm metaproteomic
data for evidence of osmoprotection strategies. While it has been
well documented by our group, and others, that these organ-
isms encode versatile osmoprotection strategies (8, 17, 18), the
preferred mechanisms and how they change with extracellular
availability of an osmoprotectant were unknown. Consistent with
production and consumption patterns of GB across wells (Fig. 1),
all organisms in the microcosm have the potential to uptake GB,
with Methanohalophilus exclusively utilizing the compatible solute
strategy through uptake and synthesis (SI Appendix, Fig. S5). From
glycine, Methanohalophilus can produce GB through sarcosine
and N-N-dimethylglycine intermediates (SI Appendix). Notably,
this pathway is expressed regardless of GB amendment, sig-
nifying that GB may be key to biogenic methane production in
fractured shales.
Collectively, metaproteomic data indicate that Ca. Uticabacter

and Halanaerobium likely use the salt-in strategy through sodium/
proton antiporters, while Methanohalophilus and Geotoga are re-
liant on the osmolyte strategy (SI Appendix, Fig. S5). Inferring
osmoprotectant function from metaomics is complicated by the fact
that many transporters are nonspecific and often these compounds
can play other roles in cellular assimilation or energy production.
Despite these challenges, our findings expand upon prior reports
that Halanaerobium solely uses a salt-in strategy and provides pro-
teomic evidence for the use of choline uptake for osmoprotection
(SI Appendix, Fig. S5). Given that GB has multiple assimilatory
(osmoprotection, nitrogen, and carbon source) and dissimilatory
(energy generation) uses, and is prevalent in fractured shales (Fig.
1), we suggest GB may be a keystone metabolite. Here, we used GB
and non-GB amended laboratory microcosms to investigate the
ecological interactions, including predation, mutualism, and com-
petition, present in fractured-shale microbial communities.

Viral Predation and Resistance Is Ongoing in Laboratory
Reactors
To elucidate predator–prey interactions in these microcosms,
we identified viral genomes, linked these viruses to hosts, and
measured their activity. Fifty-four assembled viral contigs were re-
covered and clustered into 16 unique populations, 25% of which
were affiliated with the Order Caudovirales, while the remaining
majority (75%) were taxonomically novel. Viral dynamics were co-
ordinated to their host, and notably not impacted by GB amend-
ment (SI Appendix, Fig. S6). Two of the viral populations found in
this microcosm were also previously reported (8) in Marcellus well 1
(Fig. 1 and Dataset S3). This finding demonstrates the relevance of
these laboratory-enriched viruses to the shale ecosystem.
We detected 326 unique viral peptides from 13 of the 16 viral

populations (Datasets S3 and S4). Most of the viral peptides
were identified as proteins with unknown function (36%); how-
ever, peptides involved in virion production (e.g., terminase and
head proteins) and viral integration into host genomes (e.g.,
resolvase and recombinase) were also detected (SI Appendix, Fig.
S6). These expression data show that a majority of the micro-
cosm viruses are active, and these include both temperate and

lytic infections. Thus, fractured-shale microbial communities are
likely evolving under strong constraints exerted by a diverse set
of viruses.
Previously, we detected spacer incorporation in a Halanaer-

obium genome over time from field-produced fluids (Marcellus
well 1) (8). Here, we provide evidence for the activity of the
CRIPSR-Cas system from deep biosphere microbial communities.
Cas proteins for all three functional stages of adaptive immunity
were expressed (adaptation, expression, interference; Fig. 2) (19).
Of particular importance, both Methanohalophilus and Halanaer-
obium expressed adaptive proteins for incorporating spacers into
CRISPR loci (Cas1), as well as interference proteins for producing
cognate RNAs (Cas5) that bind to and cleave the viral DNA (Cas
3, Methanohalophilus only) (SI Appendix). The congruence be-
tween laboratory and field viral populations and evidence of
CRISPR-Cas activity demonstrate that the strong viral predation
captured in our laboratory microcosms reflects ongoing viral–host
interactions maintained at the ecosystem scale.

Mutualistic Interactions Sustain Biogenic Methane
Production in Laboratory Reactors
Consistent with our prior metagenome findings and physiological
characterizations of the genus (8, 20, 21), Methanohalophilus is
inferred to be an obligate methylotrophic methanogen, lacking
the capacity to utilize hydrogen or acetate. Additionally, this ge-
nome lacked the genes necessary to directly use quaternary amines
like choline and GB (22–24). Halanaerobium appears to be an
obligate fermenter, as the genome lacks an electron transport chain
and terminal oxidase or reductase genes (4, 8). We have previously
suggested based solely on metagenomic inferences that the fer-
mentation of the amino acid derivative GB will yield products
sustaining methylotrophic methanogens in fractured shales (8).
To better elucidate this metabolic cross-feeding, we used lin-

ear discriminant analysis to identify and report the significant
metabolisms occurring at different stages of biogenic methane
production [LEfSe (25); Dataset S2]. Our proteomics data revealed
that GB was fermented by Halanaerobium to yield trimethylamine
(TMA) at the middle time point, which sustained methanogenesis
at the later time point. The proteins necessary for this metabolic
symbiosis (Halanaerobium GrdHI and Methanohalophilus MttB)
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Fig. 2. Halanaerobium and Methanohalophilus CRISPR-Cas system genes
are shown, with corresponding peptides detected in proteomics highlighted
in orange and red, respectively. Genes for adaptive immunity are denoted by
functional stage, with adaptation (A), expression (E), and interference (I)
stages all represented in metaproteomic data.
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were discriminating features of the middle and final time points,
respectively, and we failed to identify any other sources for TMA
production (Fig. 3). Other possible sources of methane include
methanol (MtaB), monomethylamine (MtmB), and dimethylamine
(MtbB), but not acetate, as corresponding proteins were detected
for methylotrophic substrates only. Our findings are consistent with
prior reports where methylotrophic methanogenesis is more prev-
alent in saline ecosystems, likely because this methanogenesis
pathway (rather than hydrogenotrophic or acetoclastic alternatives)
generates higher energy yields that are needed to sustain the in-
creased cost of osmoprotectant synthesis (2, 26).
Metabolite analysis supported the metaproteomic results, re-

vealing that 90% of GB consumed in the first 2 d was recovered as
TMA. Ninety-five percent of this TMA was subsequently converted
to methane by the last time point. Interestingly in the non-GB
reactors, the proteomic and metabolomic patterns are similar but
less prominent, with 60% of Halanaerobium-produced TMA con-
verted to methane. The fact that GB metabolism occurs regardless
of experimental manipulations has ramifications for in situ pro-
cesses, as the substrate concentrations in the non-GB microcosm
were similar to field conditions (Fig. 1). Moreover, the synthesis of
GB in the shale-free laboratory microcosm supports our supposi-
tion that increased GB over time in the field-derived produced
fluids was due to microbial synthesis (Fig. 1). The ubiquity of
Methanohalophilus across fractured shales (2) and the high effi-
ciency of methane production demonstrated here indicate that
methylamine methanogenesis may be active and important to shale
natural gas production. Supporting our findings, a prior study
predicted that biogenic methane accounted for 12% of methane
produced in a shale-gas well lifetime (3). Our findings leave open
the possibility that the augmentation of fractured shales with ex-
ogenous methyl-C1 compounds could enhance biogenic methane
production down well, analogous to acetate amendment tech-
niques currently employed in coal-bed methane recovery (27).
We next examined the capacity for other Stickland fermenta-

tions that support methanogenesis. Similar to Halanaerobium, Ca.
Uticabacter expressed proteins to ferment sarcosine (sarcosine
reductase, GrdFG) (28), yielding monomethylamine that Meth-
anohalophilus utilizes for methane production (Fig. 3 and SI Ap-
pendix, Fig. S7). Monomethylamine concentrations and necessary
enzymes (MtmB) followed the same pattern as TMA but were
significantly lower (Fig. 3 and SI Appendix, Fig. S1). Unlike GB,
sarcosine does not decrease with monomethylamine formation but
rather increases over time in both biological treatments, suggesting
microbial sarcosine production exceeds its removal (SI Appendix).
We show that mutualistic exchange of methylamines produces
biogenic methane in fractured-shale microbial communities.

Untangling the Stickland Fermentation Network Revealed
Substrate Partitioning and Competition in Laboratory
Reactors
While our field and laboratory studies indicated that GB is
readily reduced to TMA by the prevalent and highly dominant
shale bacterium Halanaerobium (2, 7), the amino acid electron
donor for this fermentation was unknown. Our laboratory study
illuminated the genomic potential for utilizing known Stickland
electron donors and acceptors in a shale-derived microbial
community, with the reactions and key functional genes for these
metabolisms summarized in Table 1.
Based on coupled metaomic data from the GB enrichment, we

conclude that lysine is likely the primary electron donor used by
Halanaerobium to reduce GB to TMA (Fig. 4). Using the enzyme
3,5-diaminohexanoate dehydrogenase (22), Halanaerobium is the
only bacterium to oxidize lysine to acetate, butyrate, and am-
monia through crotonyl-CoA in the microcosm (SI Appendix).
The pattern of expression for this enzyme was significantly cor-
related to that of GB reductase (P < 0.01), and metabolite
stoichiometry demonstrated that 93% of the lysine was oxidized

in the first 2 d during primary GB reduction. Of the other pos-
sible Stickland electron donors (29–31), lysine was in the greatest
concentration, accounting for up to 17% of GB reduction, while
other Halanaerobium Stickland donors implicated by proteomics
and metabolomics included serine (7.2%), methionine (6.7%),
glycine (4.1%), and threonine (3.8%) (Datasets S1 and S4).

A

B

Fig. 3. (A) Center colored pathway shows Stickland reactions from GB and
sarcosine to TMA and methylamine (MMA), respectively, fuel methano-
genesis with pathways colored by organism. Chemical structures are shown,
with cleaved products colored. Corresponding line graphs shows average
metabolite concentrations with SD of triplicate samples through time col-
ored by treatment (black, GB; gray, no GB). Note that TMA is reported with a
dual y axis and all dynamics of methanogenesis substrates (TMA, DMA, and
MMA) are shown in red boxes. Acetate concentrations over time can be
found in Fig. 4B. Geotoga is not represented here because it does not have
potential to carry out a Stickland reaction. (B) Heat maps display NSAF values
for proteins detected by metaproteomics in GB amended (Top) and no-GB
(Bottom) microcosms at the TF timepoint.
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Given that only a little more than a third of GB reduction can be
accounted for from known amino acid reductants in the Stickland
reaction, Halanaerobium also uses hydrogen or other currently
unknown reductants as the electron donor for GB reduction.
Unlike lysine, which represents a noncompetitive substrate for

Halanaerobium, other Stickland electron donors are more widely
used by members of the community. In addition to Halanaer-
obium, Ca. Uticabacter can also compete for glycine as a Stick-
land electron donor to support sarcosine reduction, or may use
glycine as both a donor and acceptor simultaneously (28, 32, 33)
(SI Appendix). Glycine is consumed at all time points except at
the last time point of the no-GB amendment (Fig. 4). From

proteomic and metabolite analysis, we infer that Geotoga is re-
sponsible for this glycine production, via operation of the glycine
cleavage system in reverse (Fig. 4 and SI Appendix, Fig. S8),
using ethylene glycol as an oxidant. Overall, glycine is the most
interconnected metabolite based on its variety of uses in the
microcosm community (Fig. 4).
In summary, the laboratory microcosms demonstrated that GB

and glycine have both adaptive and metabolic roles in fractured-
shale communities. For instance, GB is synthesized and used as an
osmoprotectant by Methanohalophilus, while Halanaerobium uti-
lizes GB to produce energy, providing Methanohalophilus with
substrates. Similarly, Methanohalophilus uses glycine to synthesize

Table 1. Summary of Stickland half-reactions shown in Fig. 4

Donors/acceptors Compound Relevant gene Half-reaction Refs.

Acceptor GB GB reductase (grdHI) GB ⇒ Acetyl-P + TMA 28, 32, 33
Acceptor Sarcosine Sarcosine reductase (grdFG) Sarcosine ⇒ Acetyl-P + Monomethylamine 28, 32, 33
Acceptor Glycine Glycine reductase (grdBE) Glycine ⇒ Acetyl-P + Ammonium 28, 32, 33
Donor Lysine 3,5-Diaminohexanoate

dehydrogenase (kdd)
Lysine + NAD+ ⇒ ⇒ 5-Amino-3-oxohexanoate + NADH 29, 31, 32

Donor Threonine Threonine dehydrogenase (tdh) Threonine + NAD+ ⇒ L-2-Amino-3-oxobutanoate + NADH 29, 30, 32
Donor Glycine Glycine dehydrogenase (gvcD) Glycine + NAD+ ⇒ Ammonium + CO2 + NADH 29, 32, 33

Relevant gene abbreviations are noted (shown in parentheses).
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Fig. 4. Metabolic network of interactions revealed by metaproteomics and metabolite analyses. (A) Network of Halanaerobium (orange), Meth-
anohalophilus (red), Ca. Uticabacter (blue), and Geotoga (green) shows the interconnected metabolisms of shale organisms. Arrows pointing toward and
away from microbes show utilization and production, respectively. Arrow line color denotes substrate utilization: red (oxidant in the Stickland reaction), blue
(reductant in the Stickland reaction), and gray (osmoprotectant). Bold black lines indicate the production of substrates, and terminal end products are noted
in black boxes. (B) Line graph shows average with SD of triplicate metabolite concentrations through time colored by treatment (black, GB; gray, no GB).
Abiotic control metabolite concentrations did not change significantly over time but showed glycine was added from media, not produced fluids (Materials
and Methods and SI Appendix, Fig. S5, and Dataset S1). Note, methane is shown on a dual y axis.
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GB for osmoprotection, while Ca. Uticabacter uses glycine to re-
duce sarcosine to the methanogenic substrate, monomethylamine.
In addition to amino acids, sugars like trehalose and maltose can
also be used as an energy source (Halanaerobium) and an osmo-
protectant (Geotoga). Overall, our study focuses on the multiple
uses for amino acids (and their derivatives) in facilitating micro-
organism growth and maintenance in up to 2,500-m-deep fractured
shales. Also hinting at the importance of organic nitrogen to rock-
hosted systems, Lloyd et al. (34) demonstrated the significance of
detrital proteins to supporting life in deep marine sediments. It is
intriguing to speculate that these nitrogen transformations may be
a conserved metabolism in the deep biosphere.

Noncompetitive Substrates and End Products Uncovered in
Laboratory Reactors
In addition to predation, mutualism, and competition, we iden-
tified noncompetitive substrates that provide energy for a single
organism. Our proteomics data showed Halanaerobium uniquely
fermented ethanolamine (EutBCEGH) and trehalose (TrePP)
(SI Appendix, Figs. S1 and S9), with the former substrate likely
relevant to shale where ethanolamine is provided exogenously as a
corrosion inhibitor and endogenously through biomass turnover of
cell membranes (35). Collectively, the interconnected amino acid
and sugar fermentations result in the buildup of methane, am-
monium, formate, and acetate (Fig. 4). Acetate was the most
abundant produced metabolite, with the greatest production rate
occurring before TM (Fig. 4). As expected, Halanaerobium-medi-
ated GB reduction was responsible for the increased concentra-
tion of acetate between the two treatments, accounting for 97% of
the difference between amended and nonamended GB micro-
cosms. Congruent with the observed accumulation of acetate in
microcosm studies, Geotoga, Ca. Uticabacter, and Halanaerobium
all expressed genes for acetate production, with a fourfold to
ninefold greater expression of acetate kinase fromHalanaerobium.
Other carbon sources supporting acetate production include tre-
halose and ethanolamine fermentation by Halanaerobium and
ethylene glycol fermentation by Halanaerobium and Geotoga,
which together could explain a third of the acetate produced in the
nonamended reactors (Dataset S1). The fermentation of ethylene
glycol may be important to fractured shales in the field, where this
compound is commonly added to input fluids for use as a gelling
agent in HF (https://fracfocus.org/chemical-use).

Extending Laboratory Reactor Findings to the Field Scale:
Microcosm-Generated Hypotheses Are Validated in
Appalachian Basin-Produced Fluids
Batch-operated laboratory microcosms more readily permitted
the quantification of gas and metabolic waste products generated
by the shale microbial consortia (Fig. 4), allowing mass-balance
calculations that are currently not feasible at the field scale. Key
outcomes from our laboratory microcosms included (i) deci-
phering trade-offs between osmoprotectant and energy use, (ii)
unveiling the pervasive Stickland fermentation network, and (iii)
discovering new interconnected metabolites that may be essential
to the shale metabolic economy (Fig. 4). Specifically, we demon-
strated that GB is a keystone metabolite that not only is vital to
salinity adaptation but also is fermented to TMA and acetate by
Halanaerobium, a metabolism that subsequently fuels methane
production byMethanohalophilus. Glycine was the most connected
metabolite, with proteomics indicating use as an energy source for
Halanaerobium Stickland reactions, transportation into the cell for
osmoprotectant generation by Methanohalophilus, and intracellu-
lar synthesis for assimilatory purposes by Geotoga.
To quantify the relevance of these laboratory-identified pro-

cesses at the field scale, we analyzed input and produced fluid
metagenomic and metabolite data. This includes samples from one
previously published well (n = 5; ref. 8) and 36 samples from four
additional wells reported here. For each well, samples span input

fracture fluids to produced fluids collected up to at least 300 d after
HF. Along this timescale, fluids transition from freshwater to hy-
persaline (>35 chloride g/L) (Fig. 5). From our field metagenome
data, we defined microbial strain membership and relative abun-
dance across the samples using a single copy, conserved marker
gene, RpsC (Materials and Methods and Dataset S5). Across these
produced fluid metagenomes, we identified multiple strains of
Halanaerobium and Methanohalophilus (nine and three strains,
respectively) and a single strain of Geotoga. Ca. Uticabacter was
removed from this analysis due to detection in less than five
samples. For comparison, reliance on 16S rRNA gene diversity
would have only resolved a single sequence type for each of these
genera, showing this strain-level resolution better captured the
genotypic microdiversity previously observed in shale fluids (8).
Consistent with the laboratory reactor data, metabolites related

to osmoprotection were highly correlated in produced fluids
across shale wells, with GB, choline, sarcosine, and creatine pos-
itively correlated to chloride (SI Appendix, Fig. S10). Of these
compounds, GB is generally regarded as the most potent osmo-
protectant (17), and thus it is possible that sarcosine and creatine
may instead support GB biosynthesis as outlined in SI Appendix.
Given that several of these metabolites are detected in the input
fluids and are known additives in the fracturing process (https://
fracfocus.org/chemical-use) (Fig. 5 and Dataset S1), this finding
provides further evidence that chemicals added during HF support
life in this man-made ecosystem.
Similar to our laboratory microcosms, field metabolite analyses

showed that Stickland reaction substrates have significant coordi-
nated associations. GB was positively correlated to TMA across
produced fluids from fractured shales, supporting the notion that
this osmoprotectant can be fermented to yield methanogenic
substrates (Fig. 3 and SI Appendix, Fig. S10). Additionally, another
Stickland electron acceptor identified in our microcosm, sarcosine,
was removed concomitant with the production of acetate, signi-
fying that methylamine fermentation may contribute to acetate
buildup in shales (Fig. 4). Using both our laboratory-based pro-
teomic findings and field metabolite data, we conclude that GB
fermentation is likely mediated with threonine, leucine, and glycine
as possible electron donors in the field. Lysine was not detected in
produced fluids, which may suggest rapid consumption in the field.
Similarly, hydrogen may also represent an important electron do-
nor that cannot be accurately measured in the field. Alternatively,
we must consider the absence of measured Stickland donors in the
field may signify that electron donors could be an important con-
straint on microbial methane production in situ. Collectively, our
field metabolite and metagenome data signify the ubiquity of the
Stickland reaction across shale well microbial communities.
Across the field-produced fluid samples, microbial communi-

ties converge at late time points (>40 d after HF), despite initial
differences in inoculum, well operator, or location (SI Appendix,
Fig. S10). Thus, we next examined whether the relative abun-
dance of these produced fluid microbial communities were pre-
dictive of metabolites in the shale produced fluids. Partial least-
squares (PLS) regressions demonstrated that the produced fluid
microbial community composition predicted the concentration of
seven metabolites in field-derived fluids. These predicted metab-
olites included acetate, glycine, TMA, DMA chloride, ethanol-
amine, and GB (Fig. 5), many of which were integral metabolites
identified in our laboratory microcosms (Fig. 4). However, etha-
nolamine was not included in Fig. 5 or these remaining analyses
because the correlations supporting this prediction in the field
data may be spurious (SI Appendix, Fig. S11).
To better resolve the microbial strains associated with shale

chemistries, we ranked the organisms’ contribution to metabolite
prediction using a value importance in projection (VIP) score to
define significance (>2). A single Halanaerobium strain contrib-
uted to the predictions of all seven metabolites, with the top five
highest VIP scores linking one strain to predictions of chloride,
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acetate, glycine, TMA, and GB. This finding is consistent with our
laboratory reactor inferences suggesting that, in saline fluids (chlo-
ride), Halanaerobium uses glycine to reduce GB, generating TMA
and acetate. Additionally, the other threeHalanaerobium were each
predictive of different metabolite profiles, suggesting niche parti-
tioning at the strain level may occur in this ecosystem.
Other genera identified in our laboratory microcosms also had

predictive value at the field scale. For instance, for Geotoga, the
highest predictive score was for glycine concentrations, consistent

with our laboratory proteomic evidence for glycine production via
the glycine cleavage system. Methanohalophilus, which is only de-
tected in low abundance in persisting shale microbial communities,
had a strain that was predictive of GB concentrations. This is
supported by our laboratory proteomics data showing the osmo-
protection by these methanogens may represent a microbial
source for this keystone metabolite in shales. Alternatively, this
relationship to GB could be explained by the dependency of
Methanohalophilus on GB fermentation for the synthesis of me-
thylamine substrates. Collectively, this regression-based modeling
of the field-collected chemical and biological data revealed a near-
perfect congruence between metabolisms active in our laboratory
microcosm and field-scale biogeochemistry across geographically
and geologically distinct fractured shales.

Conclusion
This study demonstrates how cultivation-based investigations,
coupled to high-resolution metaomics in both the laboratory and
field, can help establish paradigms for microorganisms influencing
terrestrial microbial ecology and biogeochemistry. Laboratory mi-
crocosms minimized many of the physical, chemical, and biological
confounding factors that prevent elucidation of metabolic inter-
actions in the field. Results from these reactors enabled us to tease
apart the complex intertwined metabolisms and trade-offs that
underpin even a “simple” microbial community (Fig. 4). Using
regression-based modeling, we show that the relative abundance of
the few bacterial taxa identified in our microcosms can predict a
significant fraction of the carbon and nitrogen variability in hy-
draulically fractured shales. The Stickland reactions identified in
this study are critical to microbial persistence, providing gene tar-
gets for other protein-rich environments including the human gut
(36) and soils (37), where the importance of this amino acid me-
tabolism is largely unrealized. Since our laboratory results retain
their applicability at the field scale, they provide a conceptual
framework to better understand or even manipulate desired bio-
geochemical processes in the deep terrestrial biosphere.

Materials and Methods
Experimental Design and Sample Collection. HF input fluids and shale-produced
fluids were collected from well heads and gas–fluid separators. These fluids
were collected from five wells in the Utica andMarcellus shales, in Ohio (n = 2),
West Virginia (n = 2), and Pennsylvania (n = 1). Our earlier study temporally
characterized geochemical and microbiological signatures of produced fluids
collected from Marcellus well 1 (8). This study contributes geochemical and
metagenomic data from four additional wells in the Utica andMarcellus shales
(Datasets S1 and S3).

In this study, a single sample from the Utica well 2 time series was used to
build microcosms to assess microbial interactions among shale microorgan-
isms. The single produced fluid sample was collected from a gas–fluid sep-
arator in October 2014 (day 96 post-HF) from an oil-gas well in Ohio, United
States. The microcosm experiment consisted of three treatments: (i) 5 mM
GB and produced fluid, (ii) no GB and produced fluid, and (iii) 5 mM GB and
no produced fluid. Each treatment was done in triplicate and consisted of
10% anoxic, produced fluid (day 96) and 90% sterile modified DSMZ
479 media dispensed in Balch tubes sealed with butyl rubber stoppers and
aluminum crimps under an atmosphere of N2/CO2 [80:20 (vol/vol)]. Before
mixing with produced fluids, the modified DSMZ medium (per liter) included
87 g of sodium chloride, 1.5 g of potassium chloride, 6.0 g of magnesium
chloride, 0.4 g of calcium chloride, 1.0 g of ammonium chloride, 2.0 g of
yeast extract, 2.0 g of trypticase peptone, 0.2 g of coenzyme M, 0.2 g of
sodium sulfide, and 4.0 g of sodium bicarbonate, and was brought to a pH
of 7.2 using 1 mM NaOH. This undefined medium was selected for two rea-
sons: (i) to facilitate sufficient biomass production necessary for proteomics
measurements and (ii) to try to capture the undefined nature of many of the
compounds used in the fracturing process (https://fracfocus.org/chemical-use).
Growth curves were done in triplicate for each treatment, using optical density
measurements at 600 nm as an analog for microbial growth (Dataset S2).
Microcosm methane production was quantified at every microcosm time point
that growth was measured using a Shimadzu (GC-2014) gas chromatograph
equipped with a thermal conductivity detector using helium as a carrier gas
at 100 °C. All GC measurements are included in Dataset S2. Samples for
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Fig. 5. (A) Chloride concentrations for field samples with paired metabolites
and metagenomes are shown (n = 41), with color denoting well. Above the
dashed line, hypersaline conditions are indicated. Circles on the Insetmap show
each well’s geographic location. (B) Bar graph shows the prevalence of key
metabolites uncovered by laboratory experiments across 41 input and produced
fluid samples from five wells. Substrates are colored by metabolism (red,
methanogenesis substrates; blue, Stickland reaction substrates). Asterisks
signify metabolites detected in at least one of the input fluids described
here. Concentration of field metabolites that could be significantly predicted
(sPLS regression, R2 > 0.1) by the field relative abundance of microorganisms
are denoted with black boxes. Taxa from microcosm experiments that were
significant variables (VIP values >2) in metabolite prediction are shown by
connections between metabolites and Halanaerobium (Halan), Meth-
anohalophilus (MH), and Geotoga (Geo), with the thickness of the line
denoting variable importance. The top three predictions are shown for each
strain, with Halanaerobium strains numbered 1–4.
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metagenomics, metabolites, and proteomics were taken at the beginning
(T0), at maximum cell density on day 2 (TM), and upon substantial methane
production on day 20 (TF) (Dataset S2). To reflect the natural salinity gradient
established in hydraulically fractured wells, for example, chloride ranges from
8.3 mg/L in the input to 95 g/L over the 328 d of well sampling, our microcosms
were established with a salinity of ∼94 g/L chloride.

Microcosm and Field Fluid Chemistry Analysis. Twenty-one fluid samples from
microcosm experiments and 40 samples from Utica and Marcellus produced
fluids were filtered (0.2 μm) at time of collection and sent to the Pacific
Northwest National Laboratory for metabolite analysis by NMR. Samples
were diluted by 10% (vol/vol) with 5 mM 2,2-dimethyl-2-silapentane-5-sul-
fonate-d6 as an internal standard. All NMR spectra were collected using a
Varian Direct Drive 600-MHz NMR spectrometer equipped with a 5-mm tri-
ple resonance salt-tolerant cold probe. The 1D 1H NMR spectra of all samples
were processed, assigned, and analyzed using Chenomx NMR Suite 8.3 with
quantification based on spectral intensities relative to the internal standard.
Candidate metabolites present in each of the complex mixtures were de-
termined by matching the chemical shift, J-coupling, and intensity in-
formation of experimental NMR signals against the NMR signals of standard
metabolites in the Chenomx library. The 1D 1H spectra were collected fol-
lowing standard Chenomx data collection guidelines (38), using a 1D NOESY
presaturation (TNNOESY) experiment with 65,536 complex points and at
least 512 scans at 298 K. Additionally, 2D spectra (including 1H–13C hetero-
nuclear single-quantum correlation spectroscopy, 1H-1H total correlation
spectroscopy) were acquired on most of the fluid samples, aiding in the 1D 1H
assignments of acetate, ethanol, ethylene glycol, methanol, and methylamine
(MMA). Biological triplicates had similar metabolite pools, with all data
reported (Dataset S1). Fluid samples from the no-cell control were done in
single and showed consistent metabolite concentrations throughout the ex-
periment. NMR metabolite methods and analyses of Marcellus 1 and Utica
2 produced fluids were reported previously in Daly et al. (8). Here, we rean-
alyzed the same produced fluids to search for important compounds outlined
by proteomics in the two wells presented in Daly et al. (e.g., lysine) and ana-
lyzed produced fluids from three additional wells (Dataset S1). Chloride con-
centrations from produced fluids were obtained using a Thermo Scientific
Dionex ICS-2100 ion chromatograph and are included in Dataset S1.

Metagenomic Sequencing and Assembly. Total nucleic acids were extracted
from five microcosm samples [inoculum (T0), GB + cells at TM, GB + cells at TF,
no GB + cells at TM, and no GB + cells at TF] using the PowerSoil DNA Iso-
lation kit (MoBio), eluted in 100 μL, and stored at −20 °C until sequencing.
DNA for the microcosm inoculum (T0) was submitted for sequencing at the
Genomics Shared Resource facility at The Ohio State University. Libraries
were prepared with the Nextera XT Library System in accordance with the
manufacturer’s instructions. Genomic DNA was sheared by sonication, and
fragments were end-repaired. Sequencing adapters were ligated, and library
fragments were amplified with five cycles of PCR before solid-phase re-
versible immobilization size selection, library quantification, and validation.
Libraries were sequenced on the Illumina HiSeq 2500 platform, and paired-
end reads of 113 cycles were collected. The other four metagenomes were
sequenced at the Joint Genome Institute. Briefly, libraries were created and
quantified using an Illumina Library creation kit (KAPA Biosystems) with
solid-phase reversible 402 immobilization size selection. Libraries were then
sequenced on the Illumina HiSeq 2500 sequencing platform utilizing a TruSeq
Rapid paired-end 404 cluster kit. DNA was extracted and sequenced from all
produced and input fluids as outlined previously (8). All raw reads from mi-
crocosms, produced fluids, and input fluids were trimmed from both the 5′
and 3′ ends with Sickle, and then each sample was assembled individually with
IDBA-UD (8, 39–41) using default parameters. Metagenome statistics including
amount of sequencing are noted in Dataset S3.

Metagenome Binning and Annotation for Proteomics Database. All scaffolds
≥2.5 kb were included when binning genomes from the metagenomic as-
sembly. Scaffolds were annotated as described previously (8). Briefly, ORFs
were predicted with MetaProdigal (42), and sequences were compared with
USEARCH (43) to KEGG, UniRef90, and InterProScan (44) with single and
reverse best-hit matches of >60 bases reported. We obtained near-complete,
curated draft (>93% estimated completion, <1% overages) genome re-
solved bins using a combination of phylogenetic signal, coverage, and GC
content, for a Halanaerobium, Ca. Uticabacter, Methanohalophilus, and
Geotoga (Dataset S3). As described previously (8, 39), genome completion
was estimated based on the presence of core gene sets (Bacteria, 31 genes,
and Archaea, 104 genes), using Amphora2 (45). Contamination (gene
copies >1 per bin) indicating potential misbins, along with GC and phylog-

eny, were used to manually remove potential contamination from the bins.
Given the dominance and high strain variation in some samples, highly
abundant genomes (>400×, bacterial and viral) often failed to assemble. To
recover these genomes, subassemblies were performed to reconstruct the
dominant genomes, using 10%, 5%, and 1% of the reads (8). Given the high
strain variation, we were able to recover only a single near-complete Hala-
naerobium bin from the most abundant strain using a 1% subassembly.
However, we know there were at least two other strains of Halanaerobium in
the microcosm. To capture the most proteomic signal, we binned Halanaer-
obium as a whole from the inoculum to create a community Halanaerobium
bin. This allowed us to see the activity of Halanaerobium as a whole in the
microcosm; thus, here we refer to Halanaerobium at the genus level. All ge-
nome statistics including 16S rRNA gene presence, completion, and length are
reported in Dataset S3. Fasta files of nucleotide and amino acid sequences for
each genome bin are included in Datasets S6 and S7, respectively.

Near–full-length ribosomal 16S rRNA gene sequences were reconstructed
from unassembled Illumina reads from microcosms and input and produced
fluids using EMIRGE (46). To reconstruct 16S rRNA gene sequences, we fol-
lowed the protocol with trimmed paired-end reads where both reads were
at least 20 nt used as inputs and 50 iterations. EMIRGE sequences were
chimaera checked before phylogenetic gene analyses. EMIRGE abundances
for the microcosm experiment are shown in SI Appendix, Fig. S4. Necessary
scripts and analyses to perform metagenome assembly, EMIRGE, annotation,
and single-copy genes can be accessed from github (https://github.com/
TheWrightonLab/metagenome_analyses).

Viral genomes were identified from all subassemblies using VirSorter (47,
48) hosted on the CyVerse discovery environment (49) (Dataset S3). VirSorter
was run with default parameters using the virome database, retaining
viruses and prophage with category 1 and 2 status. Viral genomes were then
clustered using GenomeCluster hosted on the CyVerse discovery environ-
ment with 95% average nucleotide identity over 80% of the smallest contig
(48). We combined the four microbial and 16 unique viral genome bins to
build the metagenomic database for proteomic assessment.

Metaproteomic Extraction, Spectral Analysis, and Data Acquisition. Liquid
culture (1.2 mL) from each microcosm sample was collected anaerobically,
centrifuged for 15 min at 10,000 × g, separated from the supernatant, and
stored at −80 °C until shipment to Pacific Northwest National Laboratory.
Proteins in the pellet were precipitated and washed twice with acetone.
Then the pellet was lightly dried under nitrogen. Filter-aided sample prep-
aration kits were used for protein digestion according to the manufacturer’s
instructions. Resultant peptides were snap-frozen in liquid N2, digested
again overnight, and concentrated to ∼30 μL using a SpeedVac (Labconco).
Final peptide concentrations were determined using a bicinchoninic acid
assay. All mass-spectrometric data were acquired using a Q-Exactive Plus
(Thermo Scientific) connected to an nanoACQUITY UPLC M-Class liquid
chromatography system (Waters) via in-house 70-cm column packed using
Phenomenex Jupiter 3-μm C18 particles and in-house built electrospray ap-
paratus. MS/MS spectra were compared with the predicted protein collec-
tions using the search tool MSGF+ (50). Contaminant proteins typically
observed in proteomics experiments were also included in the protein col-
lections searched. The searches were performed using ±20-ppm parent mass
tolerance, parent signal isotope correction, partially tryptic enzymatic
cleavage rules, and variable oxidation of methionine. In addition, a decoy
sequence approach (51) was employed to assess false-discovery rates. Data
were collated using an in-house program, imported into a SQL server da-
tabase, filtered to ∼1% false-discovery rate (peptide to spectrum level), and
combined at the protein level to provide unique peptide count (per protein)
and observation count (that is, spectral count) data. Spectral count data for
each identified protein was normalized using normalized spectral abun-
dance frequency (NSAF) calculations, accounting for protein length and
proteins per sample (Dataset S4). Note that metaproteomics were not done
on produced fluid samples from the field.

Microcosm Metabolic, Phylogenetic, and Statistical Analyses. Proteins for
osmoprotection (SI Appendix, Fig. S5), the Stickland reaction, and other
metabolisms discussed were mined from the amino acid annotation files of
binned genomes using BLASTp with a bit score cutoff of 60 (a technical ho-
molog) and cross-checked in metaproteomics data. For each metabolism dis-
cussed, scaffold and gene location for genes of interest are included (Dataset
S3). If >75% of proteins required for a multisubunit enzyme were detected in
the proteomics, we gave it the status of detected in the proteome.

Significance of activity reported was based on linear discriminant analysis
effect size (LEfSe) (25, 52). LEfSe analysis was performed between time
points (e.g., TM to TF in GB) and treatments (e.g., TM of GB to TM of no GB) to
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find features (proteins) differentially active. LEfSe combines the standard
tests for statistical significance (Kruskal–Wallis test and pairwise Wilcoxon
test) with linear discriminant analysis (25). It ranks features by effect size,
which puts features that explain most of the biological difference at top.
LEfSe analysis was performed at the α value of 0.05 for the Kruskal–Wallis
test and the threshold of 2 on the logarithmic linear discriminant analysis
score for discriminative features. All error bars shown here are indicative of 1
SD from the mean, and all significance statements refer to a P value of less
than 0.05.

Phylogenetic analyses were performed for genome bins and meta-
genomes using ribosomal S3 protein amino acid sequences (genomes and
metagenomes) and 16S rRNA genes (genomes only). 16S rRNA genes re-
covered from microcosm genomes and their nearest neighbors (SILVA da-
tabase; ref. 53) were aligned using MUSCLE version 3.8.31. The resulting
alignment was manually curated and a phylogenetic tree was constructed
with RAxML 7.2.9 (GTR Gamma nucleotide model, 100 bootstrap replicates).
For the S3 protein tree, amino acid sequences were pulled from the micro-
cosm bins and augmented with sequences mined from National Center for
Biotechnology Information and Joint Genome Institute–Integrated Micro-
bial Genomes databases. Sequences were aligned using MUSCLE, version
3.8.31, and run through ProtPipeliner, a Python script developed in-house
for generation of phylogenetic trees (https://github.com/TheWrightonLab).
A maximum-likelihood phylogeny for the alignment of S3 ribosomal pro-
teins and 16S rRNA genes was conducted using RAxML, version 8.3.1, under
the LG+α+γ model of evolution with 100 bootstrap replicates. All phyloge-
netic trees were visualized in iTOL and can be found in SI Appendix (SI
Appendix, Figs. S2 and S3).

Phylogenetic and Statistical Analysis of Field Data. Ribosomal S3 proteins were
used to track strain resolved abundance patterns across the HF dataset
(Dataset S5). First, all annotated ribosomal S3 proteins from 41 input and
produced fluid metagenomes were pulled to build an S3 database. Then,
using Bowtie 2 (54), metagenomic reads were competitively mapped by
sample to the S3 database using zero mismatches. Strain resolved relative
abundance was obtained by quantifying the percentage of total reads that
mapped divided by the length of the sequence and then normalizing to
within each sample (https://github.com/TheWrightonLab). Strains included
in this analysis had to have 95% of the S3 sequence covered with mapped
reads. Ribosomal protein tree with all amino acid sequences used in this
analysis was obtained using methods outlined above and is shown in
Dataset S8.

To predict fluid metabolites from the microcosmmicrobial community, we
used sparse PLS (sPLS) (55, 56), as implemented in the R package mixOmics
(57). In other words, this approach enabled us to model a relationship
between microbial abundance and fluid chemistry traits. In addition, the
predictors were ranked according to their VIP (58). The VIP measure of a

predictor estimates its contribution in the PLS regression. The predictors
having high VIP values are assumed important for the PLS prediction of the
response variable. The VIP values of the prokaryotic functional subnetworks
are provided in Dataset S9. All R scripts for modeling of HF datasets are
included in Dataset S10.

Viral Analyses. We used two methods to link viral contigs to microbial hosts.
First, as described previously, CRISPR arrays were identified in each genome
bin by using the CRISPR recognition tool plugin in Geneious R8 (8). To link
microbial hosts and viruses, we used BLASTn to identify viral contigs with
matching spacer sequences. All matches were manually confirmed as perfect
matches by aligning sequences in Geneious R8. Second, we used the d2

S

hexamer frequency dissimilarity measure (59) between viral contigs and host
genomes to predict viral–host associations. Analyses were run with five mi-
crocosm genomes and 16 viral population representatives. In all cases, the
d2

S dissimilarity measure predictions were congruent with CRISPR spacer
array linkages.

In SI Appendix, Fig. S6, expressed viral proteins are divided into seven cat-
egories: DNA/replication, lysogeny, structure, lysis, hypothetical, transposase,
and other. DNA/replication category referred to amino acid sequences asso-
ciated with DNA metabolism such as DNA methyltransferases and helicases.
Lysogeny refers to the viral lysogenic cycle and was made up of recombinases
and resolvases. The structural category included tail sheath proteins, termi-
nases, and phage tail tape measures. The transposase category was only made
up of transposase-associated amino acid sequences, while hypothetical re-
ferred to proteins of unknown function or hypothetical distinction.
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