MARCELLUS SHALE ENERGY AND ENVIRONMENT LABORATORY MSEEL

NĚTL

Tim Carr Phone: 304.293.9660 Email: tim.carr@mail.wvu.edu

Schlumberger

Dual-Fuel Diesel-Natural Gas Engine Activity, Fuel Flow, and Emissions

DE – FE0013689 and DE – FE 0024297

Data Collected

- Emissions (Exhaust and Crankcase)
 - Pre-Catalyst Diesel Only
 - Pre-Catalyst Dual-Fuel
 - Post-Catalyst Diesel Only
 - Post-Catalyst Dual-Fuel
- Fuel Consumption
 - Diesel Flow IN and OUT
 - Natural Gas Flow IN
- Engine Activity
 - J1939 Broadcast Parameters
 - Engine Speed (RPM)
 - Engine Load (%)

Engines Tested

Caterpillar 3512C - 1101 kW

Caterpillar 3512B HD - 1678 kW

Both Engines Outfitted with Caterpillar Dynamic Gas Blending (DGB) Dual-Fuel Kit

Fuel Consumption & Conversion

Fueling and Substitution

Fueling	Diesel Dual										
Steady State Drilling											
Percent Load	%	55.2	57.9								
Diesel Flow	gal/hr	39.9	15.3								
CNG Flow	DGE/hr	0.0	41.6								
Substitution Ratio	%	62%									
Pipe Tripping											
Percent Load	%	24.4	23.2								
Diesel Flow	gal/hr	19.7	15.0								
CNG Flow	DGE/hr	0.0	9.8								
Substitution Ratio	%	24%									
Hydraulic F	racturing										
Percent Load	%	72.2	74.8								
Diesel Flow	gal/hr	89.6	45.2								
CNG Flow	DGE/hr	0	86.6								
Substitution Ratio	%	5	0%								

Fuel Energy Efficiency

KRAL Fuel Flow Meter on Diesel Return Line

Drilling Engine Activity >

100

Exhaust & Crankcase Emissions

Brake Specific

High Load Drilling

Steedu	Stata	Diesel Dual				
Steady	State	Post-Cat	Post-Cat			
CO ₂		663.53	762.64			
СО		0.02	0.14			
NO _x	g/kw-hr	3.65	3.02			
ТНС		0.01	26.02			
CH ₄		0.01	25.64			

Hydraulic Fracturing

Steady State		Diesel	Dual	
		Post-Cat	Post-Cat	
CO ₂		754.97	891.12	
СО		0.04	0.57	
NO _x	g/kw-hr	3.04	3.17	
ТНС		0.01	43.46	
CH ₄		0.01	42.61	

Methane Slip

- 16% during Steady State Drilling
- 20% during Pipe Tripping
- 23% during Hydraulic Fracturing
- 1-2% from Crankcase

Drilling GHG Emissions

Summary

- Dual Fuel Operation
 - Between 6-16 % increase in CO₂ Emissions
 - Up to 3000 times higher CH₄ Emissions
 - 20-65% Substitution of Diesel Fuel
 - 15-25% Unburned Methane in Exhaust
 - Crankcase Methane 1-2% of Exhaust Rates
 - 2.5-3.0 times Higher GHG Emissions
 - CO₂ Equivalent
 - Based on Methane GWP of 25

Thank You !

PAD SITE EMISIONS

- Dust PM2.5 & Ultrafines
- MSEEL
- Community Sampling
- Sampling Methods
- Results PM2.5 "Plume"; Diesel Ultrafine Generation
- Conclusion 1km ~ background concentration

Sampling Sites

MSEEL - 2/12/2016

Michael McCawley, PhD/Dept of Occ & Env Health

11

Marcellus Shale Energy and Environmental Laboratory: Water and Solid Waste

Year one findings

12 feb 16

- Flowback volume
- Produced water
- Hydrofrac fluid vs. flowback chemistry
- Drill cuttings
 - TCLP results
 - Drilling fluid
 - Radiochemistry

Paul Ziemkiewicz Water Research Institute

West Virginia University

Flowback volumes: MIP 3,5H

3H produced 92% more water, 30% more gas

Flowback day ~1,350

Produced water from old (MIP 4,6H) wells predominantly Na, Ca, Cl

	Produced water (mg/L)					
	MIP 4H	MIP 6H				
Parameter	14-Apr-15	14-Apr-15				
Chloride	59,300	34,700				
Sodium	23,700	15,000				
Calcium	9,480	5,550				
Barium	4,970	3,040				
Strontium	1,970	1,310				
Magnesium	809	571				
Bromide	643	416				
Potassium	146	93				
Lithium	93	53				
Iron	93	155				
Sulfate	63	63				
Manganese	3	4				
Aluminum	1	0				
EC *	143,000	99,300				
Alkalinity	124	180				
TDS	104,000	65,100				
TSS	75	99				

* µS/cm

			SDWA	MIP	MIP 3H		5H
MDL		units	MCL	HF	FB day 42	HF	FB day 42
0.0011	Al	mg/L	0.05	0.42	0.00055	0.02	0.00055
0.0007	As	mg/L	0.01	0.00	0.35	0.00	0.35
0.0002	Ва	mg/L	2	0.04	2500	0.048	1100
0.4	Ca	mg/L		35.5	6800	34	2900
0.0001	Cr	mg/L	0.1	0.003305	0.05	0.00005	0.05
0.01	Fe	mg/L	0.3	1.996	140	0.005	120
0.0001	Pb	mg/L	0.015	0.00	0.005	0.00	0.005
0.019	Mg	mg/L		9.70	710	8.00	330
0.0002	Mn	mg/L	0.05	0.11	11	0.00	1.8
0.0004	Ni	mg/L		0.01	0.2	0.00	0.2
0.03	К	mg/L		3.40	130	2.50	120
0.001	Se	mg/L	0.05	0.00	0.5	0.00	0.5
0.0001	Ag	mg/L	0.1	0.00	0.05	0.00	0.05
0.1	Na	mg/L		46.50	21000	30.00	13000
0.0003	Sr	mg/L		0.34	1400	0.27	630
0.02	Zn	mg/L	5	0.07	1.2	0.04	1.2
4.3	Alk	mg/L		70.00	140	64.00	240
0.09	Br	mg/L		0.17		0.95	
0.29	Cl	mg/L	250	31.50	61000	34.50	37000
3	SO4	mg/L	250	125.00	7	140.00	7
7.6	TDS	mg/L	500	340.00	88000	565.00	55000
						_	
0.25	Benzene	μg/L	5	0.13	10	0.13	27
0.2	Toluene	μg/L	1000	0.43	13	0.01	53
0.22	Ethylbenze	μg/L	700	0.11	1.1	0.11	4
0.62	Xylene tot	μg/L	10000	0.32	3.2	0.32	23
0.005	MBAS	mg/L	0.5	0.00	0.38	0.00	0.26

Nearly all parameters were higher in flowback than frac fluid

Pink: exceeds drinking water MCL

Flowback evolution-major inorganic ions

Flowback evolution-organics

MSEEL

Hayes, 2009

Radioactive isotopes in flowback

MSEEL

MSEEL

		Drill Cuttir	ngs: Vertical S	Section		
	Drill	Drill %>				
Conventional	Cuttings	TCLP	min	max		
unning muu	Cr		6.7	32.8	mg/L	
	As	90%	2.4	30.6	mg/L	
Drill Cuttings	Pb	80%	3.5	84.9	mg/L	
% samples	Ва	70%	23.9	7,870.0	mg/L	
(Liquid fraction) > TCLP limit	Benzene	70%	0.0	300.0	µg/L	
	Se	40%	0.0	3.3	mg/L	
	Hg	10%	0.0	0.3	mg/L	

Using 'Green' Drilling Mud no parameters exceeded TCLP

- In the Vertical and Horizontal (Marcellus) sections:
- TCLP organics-no exceedances
- TCLP inorganics-no exceedances

Drilling mud: Bio-Basetm 365

Property	Unit	Value	Test Method
Physical state		Liquid	Visual
Biodegradation, 28 days	%m	55-60	OECD 301
Potential carcinogenic label	-	Νο	-
BTEX	mg/kg	< 1 *	ASTM 5790 mod.
РАН	mg/kg	< 0.1 *	EPA 8100

* Below the detection level of the method. BETX (Benzene, Ethylbenzene, Toluene, Xylene).

Bio-Base 365 from MSDS: Alkanes, Linear and Branched, Light paraffins

Product Name	CAS No.	<u> Conc. (%)</u>
Aliphatic Hydrocarbons	90622-53-0	70-95
– Undecane	1120-21-4	1-9
– Dodecane	112-40-3	1-14
– Tridecane	629-50- 5	1-9
 Tetradecane 	629-59-4	1-11
– Impurities		1-8

Radiochemistry: drill cuttings

Brazil nuts are about 12 pCi/g

Radionuclides (pCi/g)

vertical	EPA 901.1							9310							
Marcellus		⁴⁰ K			²²⁶ Ra			²²⁸ Ra			alpha			beta	
	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC
MIP 4400 3H	28	4.8	1.0	1.2	0.3	0.3	1.8	0.5	0.3	15.0	7.1	9.8	24.5	6.3	5.6
MIP 5026 3H	24	4.4	1.4	1.4	0.3	0.2	1.9	0.5	0.3	10.5	5.8	9.2	19.4	4.8	4.1
MIP 6798 5H	27	4.5	0.9	1.8	0.3	0.2	1.4	0.4	0.5	17.1	7.7	11.2	27.8	6.7	5.4
MIP 8555 5H	26	4.2	1.1	4.7	0.7	0.2	1.3	0.4	0.4	27.0	9.6	10.2	36.9	8.6	6.6
MIP 8555 5H DUP	25	4.6	1.5	4.6	0.7	0.3	1.1	0.6	0.6	38.1	11.1	9.1	29.8	6.8	4.9
MIP 9998 5H	17	4.3	2.7	9.2	1.3	0.3	0.5	0.9	0.9	46.8	11.0	4.7	42.9	9.0	5.9
MIP 11918 5H	22	3.7	1.1	4.0	0.7	0.2	0.7	0.5	0.5	24.4	9.2	10.3	23.0	6.2	6.2
MIP 11918 5H	20	3.4	1.1	4.2	0.6	0.2	0.8	0.4	0.6	23.8	6.8	5.2	28.7	6.3	5.1
MIP 13480 3H	18	3.2	1.2	9.2	1.3	0.2	0.8	0.6	0.5	55.7	14.7	11.5	35.4	8.2	5.8
MIP 13480 3H DUP	18	3.5	1.4	9.7	1.4	0.3	1.1	0.4	0.3	59.2	14.9	9.3	35.0	7.8	4.6
MIP 13480 3H Mud	13	3.0	1.1	5.6	0.9	0.2	0.5	0.3	0.8	60.0	15.9	10.5	42.5	9.6	6.1
MIP 14454 5H	20	3.8	1.1	5.8	0.9	0.2	1.3	0.5	0.6	28.8	7.9	6.5	37.5	8.0	5.4

FOR MORE INFORMATION PLEASE CONTACT:

Paul Ziemkiewicz, Director WVU Water Research Institute 304 293 6958 pziemkie@wvu.edu

USGS team objectives unconventional oil and gas development (UOG)

- Focus is on human and environmental health of waste materials from UOG development
- Identify potential contaminants in waste materials: drill cuttings, flowback/produced water.
- Conduct mass balance on injected chemicals.
- Examine partitioning of contaminants between liquid, solids.
- Focus on MSEEL Well 5H
- Results used to identify UOG contaminants in environmental samples, and substances that may affect water reuse

-River water and fracturing fluid contain > $100 \text{ mg/L SO}_4^{2-}$

-SO42- in wastewater has decreased to bdl

-Fe is bdl in fracking fluid but has reached 180 mg/L in wastewater; precipitates in wastewater likely to be hydrous ferric oxide

-Cl⁻, Na⁺, Ca²⁺ in PW are variable with no clear trends

-Dissolved organic carbon (DOC) low levels in river water

-DOC over 120 mg/L in frac fluid and over 100 mg/L in initial flowback

-Gradual decline in DOC to levels of 40-60 mg/L

Extractable Hydrocarbons in MSEEL 5H Wastewater

Area

Sampling Date

MSEEL plans

- Understand partitioning of inorganic between aqueous phase and that form in wastewater
- Identify changes in organic during production; what
 What injected organics are lost to the ground, and what organic substances are sourced from shale
- Link USGS results to other datasets to develop understanding of processes and reactions impacting wastewater composition

BIOGEOCHEMICAL CHARCATERIZATION OF CORE, FLUIDS AND GAS

Isotopic/molecular/microbial characterization of sidewall core WVU - Sharma ; OSU - Mouser, Wrighton, Wilkins, Cole, Darrah

Isotopic/molecular/microbial characterization of produced fluids WVU - Sharma ; OSU - Mouser, Wrighton, Wilkins, Cole, Darrah NETL - Hakala, Crandall, Phan

> Molecular characterization of produced gas WVU - Sharma ; OSU - Darrah

Sidewall Core Analysis

Collaborators:

Mouser, Wrighton, Wilkins, Cole, Darrah

THE OHIO STATE UNIVERSITY

GC-GC analysis

Tracer

Addition

Sidewall Core core processing

Sample preparation Biomarker Extraction

Aliphatic biomarker distribution

Vikas Agrawal PhD. Student

What are geological controls on microbial distribution, diversity and function ?

- Gas productivity and well infrastructure
- Potential for fracture and pore clogging

Membrane Liability (turnover)

VIABLE

H2COPOCH2CN

Polar lipid, ~ PLFA

OH-COC

сосн

Microbial life/adaptations

CSIA & Fatty Acid biomarker distribution

NON-VIABLI

H.COC

H₂COH

eutral lipid ~DGE

Rawlings Akondi PhD. Student

- Ratios of physiological stress DGFA/FAME and DGFA/PLFA/FAME lipid biomarkers
- Changes in the PLFA and DGFA profiles during nutritional & thermal stress
- CSIA will be used to identify microbial populations involved in methanogensis, methanotrophy, sulfate reduction etc.

Sidewall Core Analysis

WestVirginiaUniversity.

Collaborators:

Mouser, Wrighton, Wilkins, Cole, Darrah

THE OHIO STATE UNIVERSITY

Data

Integration

Sample preparation

Sample Analysis

What are major controls on TOC variation and source/type of organic matter?

- Identification of sweet spots
- Oil vs gas production
- Frackability/Re-stimulation

Gamma Ray log with TOC and isotope ($\delta^{13}C_{org}$, $\delta^{13}C_{carb}$, $\delta^{15}N$) variations of 8 sidewall core samples collected from well MIP 3H. Shifts in $\delta^{13}C_{org}$, $\delta^{13}C_{carb}$ and $\delta^{15}N$ values will be used to understand controls on variations in TOC, sources of organic matter, and microbial recycling of carbon and nitrogen

DECODING KEROGEN STRUCTURE AND ITS INTERACTIONS

Vikas Agrawal PhD. Student

Behar & Vandenbroucke, 1987

Frac water-shale experiments to be conducted high pressure/temperature static systems to understand:

- □ Changes in kerogen structure and composition on interaction with frac fluids under simulated subsurface conditions.
- **General Series and Se**

Initial $\delta^{13}C_{DIC}$ enrichment trend in wells 5H and 3H during first few hours to days indicates dissolution of carbonates in reservoir after injection of hydraulic fracturing fluids. High $\delta^{13}C_{DIC}$ values indicate carbonates were precipitated during initial phase of biogenic methanogensis in the reservoir. The C and S isotope trends will be monitored over several months to understand microbial reactions induced in the reservoir after injection of hydraulic fracturing fluids.

Extraction of Sulfate and sulfur and oxygen isotope analysis in progress

effluent

Prior research showed multiple chemical and physical processes can affect the reservoir.

Outstanding questions

How does the reservoir chemistry change during flowback?

How do fluid/gas flow pathways change during flowback and hydrocarbon production?

Renock et al., 2015

Approaches

Evaluate redox changes (which could affect organic and microbiological reactions in the reservoir) through analysis of iron and sulfur species

Distinguish fluid-rock reaction versus physical transport of materials through analysis of truly dissolved versus colloidal loads in produced water

Technology Laboratory

Methods

66°C. 20MPa

Analysis of MSEEL produced water sample splits for time-series concentrations of cations, anions, and isotope ratios for Sr, Li, and B

Conduct laboratory flow-through experiments to evaluate fluid-rock interactions using MSEEL core

NETL: Alexandra Hakala, Thai Phan, Dustin Crandall 34

OSU-WVU Deep Biosphere Collaborative Research

Kelly Wrighton Microbiology, OSU

Microbiology

Jeff Daniels, PI – OSU Team Tom Darrah Earth Sciences, OSU Engineering

Paula Mouser Envr Engr, OSU Mike Wilkins Earth Sciences, OSU

Geology

Shikha Sharma Geology, WVU

David Cole Earth Sciences, OSL

Sample Distribution For Each Transect

MSEEL - 2/12/2016

P. Mouser/Ohio State University
Contamination controls for sidewall cores

Wrighton Lab

Sample all input fluids (drill mud, brine, etc.) for DNA extraction and sequencing

Add tracer to drill mud

Bagged cores, transported anaerobically to OSU

Sterile hood to process cores

Clean cores, keep washes for DNA extraction and sequencing

flame sterilize & grind shale

Ground shale distributed for:

- metagenomic sequencing
- . culturing
- lipid analyses

6 <u>100 μm</u>

Quantify tracer removal

DNA Extraction and Sequencing Efforts

<u>Pristine core material</u>: 9 depths in and surrounding the Marcellus for metagenomic sequencing

Contamination control:

DNA extraction and sequencing from ~375 core washes and input fluids

*First batch of DNA from pristine cores submitted to DOE for sequencing!!!

MSEEL - 2/12/2016

Wrighton lab- R.A. Daly/Ohio State University

Pristine Shale Enrichments

Enrichment Strategy

Wilkins Lab

SYBR Gold (fluorescent DNA stain)dyed Mahantango formationenrichments targeting for (A) SulfateReducing Bacteria and (B)Carbohydrate Fermenters. 100x.These are the most promisingenrichments thus far.

MSEEL - 2/12/2016

Biological Signs of Recent Pristine Rock-Hosted Life, PLFA Measurements

Solvent Extraction

Total Lipid Isolation

Silicic Acid Chromatography

Polar Lipid **Methanolysis**

Fatty Acid Methyl Ester GC-MS

Quantification and Analysis

--Highest Biomass Recovered from Interface --Largest Number of Unique PL-FAMEs at Interface

--Sidewall Core Profiles Differ Between Rocks --Cores PLFAs Differ from Muds/Washes

Mouser Lab

Evidence of Life in Marcellus Wells

Flowback fluid samples were fixed in 2.5 % paraformaldehyde, stored at 4°C and enumerated within one week of sampling. Counting: Samples were filtered through a black 0.22 µm PCTE filter, stained *in situ* with SYBR-Gold fluorescent nucleic acidspecific stain and imaged with a 40X objective under 480 nm excitation. Bacterial cells were manually counted and averaged from images of 10-20 fields per filter. **Upper and lower left:** Images of flowback fluid samples collected on Feb 3, 2016 (Day 56) from wells 3H (up) and 5H (bottom). **Right:** Summarized bacterial counts through the most recent collection time point, February 3, 2016. **Note:** Both wells received the same source water but different hydraulic fracturing treatments.

Cole Lab

Core and Filter analysis

Characterize mineralogy, organic matter and pore distribution

Mineral Name

Background
Quartz
Calcite
Pyrite
K-Feldspar
Albite
Chlorite
Illite
Micas
Trace minerals
Unclassified
Unknown (low signal)

Dual Beam FIB/SEM and QEMSCAN to relate mineralogy to 3D pore network

Analysis of filters from flowback to characterize mineral precipitates and microbes.

MSEEL - 2/12/2016

MSEEL - 2/12/2016

Noble Gasses in Core and Fluids

- Tracers for crustal fluid migration
- Samples show no air contamination
- Testing New Multicollector NG-MS Instrument: Only 2 in world for hydrocarbon analysis (Oxford)
 - Determines residence time in natural gases and pore waters
 - Provides increased precision of measurements.
- Beginning analysis on cores and fluid inclusions
 - -See poster Grove, Whyte, Darrah
- Data will provide information on extent of fluid migration, permeability, and thermochronology

Darrah Lab

Driving Innovation • Delivering Results

Scanning of the MSEEL MIP 3H Core

From left to right: Isolated pore space in sandstone; medical CT scanner; Cover of JPT from Jan 2015 highlighting NETL's foamed cement work; Core flow apparatus; Simulated flow velocities in fracture geometry

Dustin Crandall

National Energy Technology Laboratory

Multi-Scale CT Flow and Imaging Facility

Combined with MSCL Data

Data Available

- If you want any of this data, we really want to get it to you!
 - Medical CT scans are already on MSEEL.org
 - Poster at this meeting
 - Title "Preliminary CT and High Resolution Log Data, Johnathan Moore and myself"
 - Data on disc available
 - We've burned a couple of discs for those who want to look at this weekend
- Thank you!

For More Information, Contact NETL the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow

OENERGY

Schlumberger Technology Corporation

- Provided array of products and services to Northeast Natural Energy on MIP wellsite
- Drilling Group
- Characterization Group
- Production Group

Cement Temperature Finite Element Model Validation using Fiber Optic Field DTS Data

- Validate/calibrate current temperature model with Distributed Temperature Survey (DTS)
- Possibility to include temperature behavior during drilling and post placement cement Heat of Hydration effect

Wellbore Integrity Through Engineered Design, Evaluation and Monitoring

- Design optimization by incorporating formation/borehole data acquired before cement job
- Forecast and measure wellbore integrity
- Identify mechanism of defects in cement placement

MIP 3H & 5H Microseismic Configuration

Geophone			Distance	Geophone			Distance	<u> </u>			/	/			/						L
Array Position			to Mid	Array Position			to Mid									1 2 3	4 5	6 7 8	9 10 11	12 13	14
(Depth - ft)	Well	Stage	Perf (ft)	(Depth - ft)	Well MIP 5H	Stage 1	Perr (ft)								L	16 17 18	19 20	21 22 23	5 24 25 26	2/ 28	12
, , ,	MIP 3H	7	2654	1	MIP 5H	2	4067														-
	MIP 3H	8	2459	-	MIP 5H	3	3885														
-	MIP 3H	9	2290		MIP 5H	4	3684													-	
-	MID 3H	10	2056		MIP 5H	6	3498														4
-	MID 3H	10	1800		MIP 5H	7	3127		-								L.				
-		12	1742		MIP 5H	8	2909														J
-		12	1/43	1	MIP 5H	9	2731				_								-		
-		13	15//	-	MIP 5H	10	2322														
-	IVIIP 3H	14	1458	-	MIP 5H	12	2156														-
-	MIP 3H	15	1348	-	MIP 5H	13	1960														
	MIP 3H	16	1304		MIP 5H	14	1777											1			
VSI-12 MIP SW	MIP 3H	17	1264	6310 - 7110 MC	MIP 5H	15	1014														1
6310 - 7110 MD	MIP 3H	18	1264		MIP 5H	17	1267		-								-				
	MIP 3H	19	1269		MIP 5H	18	1138						_							\sim	4
	MIP 3H	20	1315		MIP 5H	19	997 879							_					-		
	MIP 3H	21	1388		MIP 5H	20	811										<u> </u>				
	MIP 3H	22	1500		MIP 5H	22	791									1					-
	MIP 3H	23	1655	1	MIP 5H	23	807	\sim	1								1				
	MIP 3H	24	1811		MIP 5H	24	9872	\sim							-			1			
	MIP 3H	25	1986		MIP 5H	26	1110	$/ \sim$													1
	MIP 3H	26	2157		MIP 5H	27	1256	\sim	\sim			5									
	MIP 3H	27	2350		MIP 5H	28	1410		/	\sim	~~<	\sim	_	~				1		<u> </u>	-
	MIP 3H	28	2481		MIP 5H MIP 5H	29 30	1553	\prec \nearrow		/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			_							
	MR										HOWING			MAAAAAA	TUTALA						-
		\rightarrow					\geq		\checkmark	\sim								-	\supset	+	_
	\bigcirc	\succ	\frown	\prec	\succ	\checkmark	×	\nearrow		\succ	\sim		W	\geq	\leq	\geq	\searrow	\sim	\sum	L	
$\langle\!\langle \rangle$	\square	\succ	\nearrow	\checkmark	\searrow	$\langle \rangle$	>	$\langle \rangle$	\square	\succ	\bigcirc	\succ	\checkmark	~	<	>	$\langle \rangle$	\geq	$ \rightarrow $	\leq	>
<u> </u>	\geq	MIP	<u>3Ĥ</u>	$\langle - \rangle$	$\leq_{\mathfrak{M}}$		- Hoodh	14000000000000	000000	i i i i i i i i i i i i i i i i i i i	HHH	00000	000 M	HOHHH		000000000		HIM	$\langle \langle $		Ś
delta z, x,	y = 40	JU ft	~	\sim	\checkmark	\sim	< "	\rightarrow	\frown	\checkmark	\rightarrow	\leq	\nearrow	~~~	/ ~	Ň		\times	$ \square$	1834	,

Side View Radius Filtered Events – 2,500 ft

Sized by magnitude: 2 to 10 :: -2.5 to -1

Executive Summary of Conclusions

- MIP 3H Average Half Length: 784ft, Average Height: 496ft, Average Azimuths N76°E
- MIP 5H Average Half Length: 618ft, Average Height: 540ft, Average Azimuths N63°E
 - Generally displays higher fracture height growth indicating the jobs were placed in geologically similar zones as well as creating similar geometries and pressure responses
- Overall event complexity indicates higher stress anisotropy when compared to other unconventional plays.
- Higher amounts of 40/70 sand resulted in larger fracture geometries.
- Higher viscosity fracturing fluid leads smaller fracture height growth, although it will deliver better proppant transport properties.
- Microseismic, lateral logs, and pumping data can be used to create a calibrated DFN model with synthetic microseismic.
- Normalized production comparison recommended in order to determine the effect of slight fluid and completion alteration

Enhanced Perforation Design, Performance and Monitoring

Challenge

Ensure optimal lateral coverage while improving efficiency and EUR

<u>Goal</u>

 Predict and optimize perforation cluster efficiency while monitoring performance

Key Enablers

- Lateral measurements (SSCAN, QGEO, USIT)
- Fiber optics monitoring (hDVS, DTS)
- SLB proprietary engineering workflows

<u>Steps</u>

- Strategic stage placement based on rock fabric and mechanical properties
- Limited entry perforation design based on estimated breakdown pressure
- Performance monitoring with Fiber optics (hDVS, DTS)

Preliminary Results

Figure 1: Estimated breakdown pressure, predicted and actual (hDVS) cluster efficiency. Geometric design (left) versus Limited Entry design (right).

Figure 2: Fiber optics hDVS data comparing Geometric design (top) versus Limited Entry design (bottom). Limited entry design show better activity distribution across treatment stage.

Complex Fracture Modeling in Marcellus Shale with Slickwater and Visco-Elastic Stimulation Fluids

Challenge

· Improve frac placement and EUR with reduce water usage

<u>Goal</u>

• Evaluate Slickwater and Sapphire VF fluid systems and provide recommendations based on operational risk and production performance

Key Enablers

- · Geomechanical and Petrophysical measurements
- Mangrove and SLB engineering workflows
- Sapphire VF, Microseismic monitoring

Preliminary Results

 Decreased water usage by 25% with 30% increase in avg. PPA (1.33 to 1.75) and 100% placement

Sapphire VF stages (blue rectangle) well contained within the Marcellus

3D property modeling. Initial framework for hydraulic fracture simulation

Sapphire VF design (bottom left) showing better conductivity distribution compared to Slickwater design (top left)

Monitoring static strain while casing running in hole with Fiber Optic Cable

 Identify well deviation and tension applied on the cable while running casing in hole using DSTS (Dynamic Strain and Temperature Sensing) technology.

Monitoring temperature and strain during cure after cementing

 Strain and temperature measurements from fiber optic cable were used to monitor cement job and post-job curing period. Analysis will be performed during the cure after cementing to better understand how the cure is behaving.

Monitoring cementing job using fast update BOTDR

 This publication will explain the physics of the technology and possible applications for better understanding in real time the impact on cement volumes or post cement integrity

Influence of Completion Deployment Techniques on DTS response during Frac Monitoring

DTS has historically been obtained by deploying a fiber on a control line strapped to tubing inside a wellbore. More recently, control lines are being deployed exterior to casing for plugand-perf jobs.

The DTS response during injection is completely different in the two cases!! Paper would present mathematical and field-cases demonstrating what is going on, including the NNE dataset

Influence of Gauge Length on results from Fiber Acoustics during Frac Stimulation

Fiber Acoustics relies on backscatter of Rayleigh waves. The raw data is sampled in the time domain and over a continuous length of deployed fiber. For each time and depth, the amplitude and phase of that backscatter is computed in real-time. This computation requires a window of depth called the gauge-length. Long gauge lengths give blurry images if too long, short gauge lengths introduce numerical artifacts if too short. This paper would examine the interplay of depth-sampling and gauge length on the NNE dataset.

Monitoring frac job using combined DAS and DTS

This publication will examine the DAS and DTS data obtained from the NNE data set and provide insight into the physics of distributed data during stimulation. In particular, it will give an answer to the question of why are there apparent time intervals of DTS warming in the middle of each frac stage

Real-Time Interactive Remote Display of DTS and DAS Data for Optimization of the Well Treatment Process

In this paper we describe a novel solution to the remote display of DTS and DAS data to facilitate real-time decision making. Wellsite data is processed automatically onsite to produce a light-weight data format suitable for transmission over cellular and VSAT links to remote servers. A graphical interface provides an interactive display and interpretation of data on a web browser. This can then be made available to distributed experts and clients anywhere in the World. This approach İS demonstrated using data from a stimulation treatment in US Land.

Improving Geomechanics Model with New Dipole Flexural Inversion Workflow

Objective

 Improve characterization of elastic properties and stress profiles in Marcellus using the new dipole flexural inversion workflow to better predict hydraulic fracture growth

Key Benefits

- · Additional Cij parameters estimated from the new workflow
- Lower uncertainty in Stoneley modeling due to sensitivity to mud slowness
- Better understanding of formation anisotropic elastic properties

Frequency-dependent sensitivities

Sequential inversion of TI-constants C55=14.5 GPa C33=36.7

C55=C44; and C13=C23

C13=9.3 C66=16.9

Fast dipole SH (X,-X,)

0.02

• Improvements in closure stress estimation

Example

x350

100 0

C₁₁ (GPa)

40

Cee

0

C₅₅

40 0

40 0

C₄₄

40 0

C₁₃

MSEEL - 2/12/2016

C₂₃

Mapping Fiber-optic Cable and Perforation Placement

- Monitors connected through fiber optic cables
- Capable of monitoring temperature and pressure downhole remotely and in real-time
- Identifying downhole conditions related to production
- Acute and Chronic flow patterns

Mapping Fiber-optic Cable and Perforation Placement

- Wireline Perforating Platform Toolset allowing measurements while perforating
- Originally used for orienting perforations in multi-string completions. Currently being used to detect fiber optics outside of casing.
- Run to ensure orientation of perforations away from destructible monitoring and signal transporting elements
- Integrating Standard Operating Procedures for new use in horizontal Pumpdown environments

Surface seismic monitoring at MSEEL: Slow shear-slip deformation

Abhash Kumar/NETL

Measurement of Key Shale Petrophysical Properties

- Porosity
- Permeability
- Compressibility
- Stress Effects
- Adsorption
Precision Petrophysical Analysis Laboratory (PPAL)

- Steady State Permeability Measurement
 - Impact of stress on permeability
 - Modified Klinkenburg (Double Slippage) Correction
 - Fracture Closure Pressure

Precision Petrophysical Analysis Laboratory (PPAL)

Layout of the PPAL components and plumbing

Double Slippage Correction

$$K_{a} = K \left[1 + \left(\frac{b^{2} L_{\kappa e}}{\lambda} \right) \frac{1}{p^{2}} \right]$$

Impact of Stress

Sequential Stress

Research Overview

Ali Takbiri-Borujeni WVU

Simulation of hydraulic fracturing treatment (MIP-4H well)

Multiscale modeling of gas flow in shale

Molecular Dynamics (MD) simulations

Pore network modeling

Mass flux of Methane across a 5-nm graphite channel

Kazemi, M and Takbiri-Borujeni, A, "Molecular Dynamics Simulation of Gas Flow in Shale Gas Reservoirs", Submitted to Journal of Natural Gas Science and Engineering, 2016

Using Predictive Modeling to Develop a Cost Efficient and Effective Completion Design

Variables of Interest

- To develop a predictive model for production per stage data gathered through the use of fiber optics, microseismic, and high imaging lateral logs will be used. The variables of interest at the start of this process include the following listed below:
 - Depth
 - Bond Index
 - CBL Amplitude
 - Gamma Ray
 - Gamma*ROP
 - Sonic Porosity
 - Shots
 - Clusters
 - Faults
 - Total Fractures
 - Wellbore Placement Above Onondaga
 - Target Top Above Onondaga
 - ROP/WOB
 - Background Gas
 - Rate of Penetration
 - ROP/WOB
 - Number of Microseismic Events
 - Fracture Height
 - Fracture Complexity
 - Fracture Width

- Average Magnitude
- Downward Growth
- Average Stage Temperature
- Cluster Efficiency
- Frac Gradient
- ISIP
- Breakdown Pressure
- Average Treating Pressure
- Average Treating Rate
- Pad Volume
- Total Clean Fluid
- Total Proppant
- Total 100 Mesh
- Total 40/70 Mesh
- Flush Volume
- LB/BBL
- Flow Rate Per Perforation
- Gel Per Stage
- Percentage Coated Proppant

Weka

- Weka is a popular machine learning software developed by the University of Waikato in New Zealand.
- Weka is a collection of algorithms used for data mining, data analysis, and predictive modeling.
- For our project, Weka will mainly be utilized to run linear regressions and multiple linear regressions to find the best predictive model for production per stage.

Preprocess Classify Cluster Associate Select attributes Vis	ualize
Open file Open URL Open DB Ge	nerate Undo Edit Save
Filter	
Choose None	Apply
Current relation Relation: iris Instances: 150 Attributes: 5	Selected attribute Name: sepalwidth Type: Numeric Missing: 0 (0%) Distinct: 23 Unique: 5 (3%)
Attributes	Statistic Value
	Minimum 2
All None Invert Pattern	Maximum 4.4
	Mean 3.054
No. Name	StdDev 0.434
1 sepallength	
2 sepalwidth	
3 petallength	
4 petalwidth	Class: class (Nom) Visualize All
Remove	
	2 3.2 4

MARCELLUS SHALE ENERGY AND ENVIRONMENT LABORATORY MSEEL

- Integration of Research/Technical Results
 - 🖊 Key Research Foci
 - Anticipated Results
 - Impact/Implications
 - Timeline Acceleration
- Coordinated Publication/Presentations
 - National Meeting(s) Session(s)
 - Dedicated Journal/Memoir
 - Other Avenues of Dissemination
 - 🖊 Timeline
- Results Supporting 2017-18 Decision Point
 - Extend Study Drill Additional Wells
 - Remaining Questions for Marcellus

